
Math 2940 Worksheet
Factorizations and Vector Spaces

Week 6

October 3rd, 2019

This worksheet covers material from Sections 2.5, 4.1, and 4.2. Please work in collaboration
with your classmates to complete the following exercises - this means sharing ideas and asking each
other questions.

Question 1. Find an LU factorization of

A =

−5 3 4
10 −8 −9
15 1 2
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Question 2. Show that the set H of all points in R2 of the form (3s, 2 + 5s) is not a vector space,
by showing that it is not closed under scalar multiplication.

(Find a specific vector u in H and a scalar c such that cu is not in H.)

Question 3. Let A =

 7 −3 5
−4 1 −5
−5 2 −4

, v =

 2
1
−1

, and w =

 7
6
−3

. Suppose you know that

the equations Ax = v and Ax = w are both consistent. What can you say about the equation
Ax = v + w?

Question 4. Suppose a 3 × 3 matrix A admits a factorization as A = PDP−1, where P is an
invertible 3× 3 matrix, and D is the diagonal matrix

D =

1 0 0
0 1/2 0
0 0 1/3


Show that this factorization is useful when computing high powers of A. Find fairly simple formulas
for A2, A3, and Ak (k is a positive integer), using P and the entries in D.
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Question 5. The set P3 of all polynomials of degree less than or equal to 3 is a vector space. We
can represent its elements in terms of the following standard basis vectors:

1 =


1
0
0
0

 , x =


0
1
0
0

 , x2 =


0
0
1
0

 , x3 =


0
0
0
1



For example, the polynomial 1 + 2x2 − x3 would correspond to the vector


1
0
2
−1

.

(a) The derivative can be thought of as a linear transformation D : P3 → P3. What is the matrix
corresponding to this linear transformation?

(Hint : Think about what this transformation does to each of the basis vectors)

(b) Is the matrix you found in part (a) invertible? Is that the answer you expected from calculus?
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Question 6.

(a) The set of orthogonal matrices are the set of square matrices Q that satisfy QTQ = I. Show
that the Givens rotation matrix from homework 3 is orthogonal.

Q1 =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1



Just as elementary row operations lead to the LU factorization, Givens rotations lead to
another type of factorization. The QR factorization of an m × n matrix A has the form
A = QR, where R is an upper triangular matrix and Q is orthogonal.

(b) Suppose R is an invertible n×n matrix. Show that RT is also invertible. What is its inverse?
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(c) In homework 4, you showed that the least-squares solution of an overdetermined system (more
equations than unknowns) Ax = b satisfies the so-called normal equations ATAx = ATb.

Suppose that A = QR is a QR factorization of A, where R is invertible. Solve the normal
equations for x using the QR factorization of A.
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Question 7. Find an LU factorization of

A =


2 −4 −2 3
6 −9 −5 8
2 −7 −3 9
4 −2 −2 −1
−6 3 3 4
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Answer to Question 1. To compute the LU factorization, we need to reduce the matrix to echelon
form.
I’m going to write this solution in two columns, with the right column showing the results of the row
operations (which will become U), and the left column keeping track of the actual row operations
(which will become L).
The entries in L will come from normalizing the highlighted entries on the right.

L =

 1
−2
−3


L =

 1 0
−2 1
−3 −5


L =

 1 0 0
−2 1 0
−3 −5 1



A =

− 5 3 4
10 −8 −9
15 1 2


−5 3 4

0 − 2 −1
0 10 14


U =

−5 3 4
0 −2 −1
0 0 9


So the LU factorization is 1 0 0

−2 1 0
−3 −5 1

−5 3 4
0 −2 −1
0 0 9

 =

−5 3 4
10 −8 −9
15 1 2



Answer to Question 2. If we graph this problem, we can see that H is a line in R2, but does not
actually go through the origin. Graphically, it looks like this:

(If H was a line that went through the origin, it would be a vector space.)
But since it doesn’t go through the origin, I can first find some vector u in H, say:

s = 1 =⇒ u =

[
3s

2 + 5s

]
=

[
3
7

]

Then if I multiply by c = 0, I get cu =

[
0
0

]
, which is not in H, because

[
0
0

]
is not of the form

[
3s

2 + 5s

]
Since H is not closed under scalar multiplication, it is not a vector space.
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Answer to Question 3. Since Ax = v and Ax = w are both consistent, that means that both v
and v are in the column space of A (this is the vector space spanned by the columns of A, often
written Col(A)).

Because Col(A) is a vector space, it is closed under addition. This means that v + w is in Col(A).

Therefore, Ax = v + w is consistent

Answer to Question 4. If we have that A factors as A = PDP−1, then it’s much easier to
compute high powers of A. For instance,

A2 = A ·A = PDP−1PDP−1

The P−1P in the middle cancels out, so this becomes

A2 = PD2P−1

Since D is a diagonal matrix, squaring it is very easy: we just square each entry.

A2 = P

1 0 0
0 1/4 0
0 0 1/9

P−1

Similarly for A3:
A3 = A ·A ·A = PDP−1PDP−1PDP−1 = PD3P−1

so

A3 = P

1 0 0
0 1/8 0
0 0 1/27

P−1

Extrapolating this pattern, for any positive integer k we have

Ak = P

1 0 0
0 (1/2)k 0
0 0 (1/3)k

P−1

Answer to Question 5.

(a) To get the matrix, we will find its columns by applying the linear transformation to each
standard basis vector:

D




1
0
0
0


→ d

dx
(1) = 0→


0
0
0
0



D




0
1
0
0


→ d

dx
(x) = 1→


1
0
0
0
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D




0
0
1
0


→ d

dx
(x2) = 2x→


0
2
0
0



D




0
0
0
1


→ d

dx
(x3) = 3x2 →


0
0
3
0


Using these as our columns, the matrix is:

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


(b) The matrix is not invertible , because the first column is all zeros, so the columns are not

linearly independent.

This is actually what we should expect from calculus, since we know there are infinitely
many functions with the same derivative (that’s why we need to add the +C when taking an
anti-derivative). That means the derivative is not one-to-one, so it shouldn’t be invertible.

Answer to Question 6.

(a) We can check this one directly by computing QT
1Q1:

QT
1Q1 =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


=

 cos2(θ) + sin2(θ) sin(θ) cos(θ)− sin(θ) cos(θ) 0
sin(θ) cos(θ)− sin(θ) cos(θ) cos2(θ) + sin2(θ) 0

0 0 1

 =

1 0 0
0 1 0
0 0 1


so the Givens rotation matrix Q1 is orthogonal.

(b) Since our matrix R is invertible, that means there is a matrix R such that:

R−1R = I

Taking the transpose of both sides,

(R−1R)T = IT = I

for the left hand side, we can use the rule that (AB)T = BTAT to get:

RT
(
R−1

)T
= I

We can also do the same thing starting from

RR−1 = I

to get (
R−1

)T
RT = I

This means that RT is invertible, and its inverse is
(
R−1

)T
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(c) The normal equations are:
ATAx = ATb

Using the QR factorization A = QR,

(QR)T (QR)x = (QR)Tb

RTQTQRx = RTQTb

because Q is orthogonal, the QTQ in the left hand side cancels, and

RTRx = RTQTb

Since R is invertible, RT is invertible, so we can multiply both sides on the left by
(
RT
)−1

to get
Rx = QTb

Multiplying both sides on the left by R−1,

x = R−1QTb

(In practice, we wouldn’t actually compute R−1. To solve this efficiently, we would actually
compute QTb, and then use back-substitution to solve Rx = QTb, since R is already in
echelon form.)

Answer to Question 7. We can compute the LU factorization in the two-column way I used for
Question 1 as follows:

L =


1
3
1
2
−3



L =


1 0
3 1
1 −1
2 2
−3 −3



L =


1 0 0
3 1 0
1 −1 1
2 2 −1
−3 −3 2



L =


1 0 0 0 0
3 1 0 0 0
1 −1 1 0 0
2 2 −1 1 0
−3 −3 2 0 1



A =


2 −4 −2 3
6 −9 −5 8
2 −7 −3 9
4 −2 −2 −1
−6 3 3 4




2 −4 −2 3
0 3 1 −1
0 −3 −1 6
0 6 2 −7
0 −9 −3 13




2 −4 −2 3
0 3 1 −1
0 0 0 5
0 0 0 −5
0 0 0 10



U =


2 −4 −2 3
0 3 1 −1
0 0 0 5
0 0 0 0
0 0 0 0
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So the LU factorization is:
1 0 0 0 0
3 1 0 0 0
1 −1 1 0 0
2 2 −1 1 0
−3 −3 2 0 1




2 −4 −2 3
0 3 1 −1
0 0 0 5
0 0 0 0
0 0 0 0

 =


2 −4 −2 3
6 −9 −5 8
2 −7 −3 9
4 −2 −2 −1
−6 3 3 4
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