
Math 2940 Worksheet
Least Squares, SVD

Week 14

December 5th, 2019

This worksheet covers material from Sections 6.4, 6.5, and 7.4. Please work in collaboration
with your classmates to complete the following exercises - this means sharing ideas and asking each
other questions.

Question 1.

(a) Apply the Gram-Schmidt process to the columns of A =


5 9
1 7
−3 −5

1 5



(b) Use your answer from part (a) to compute a QR factorization of A.
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(c) Use your answer from part (b) to find a least-squares solution of Ax = b for b =


−1

2
1
6

.

Question 2. Suppose A = QR, where Q is an m× n matrix with orthogonal columns and R is an
n× n matrix. Show that if the columns of A are linearly dependent, then R cannot be invertible.
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Question 3. Let A =

1 −3 −3
1 5 1
1 7 2

 and b =

 5
−3
−3

.

Find a least-squares solution of Ax = b, and compute the associated least-squares error.
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Question 4.
Consider the set of vectors with unit length in R2, denoted by D = {v ∈ R2 : ‖v‖ = 1}. Describe
the image of D under the linear transformation

T (v) =

3 2
2 3
2 −2

v, v ∈ D

Sketch the set D and its image T (D). [Hint : use the SVD of the matrix of T .]
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Answer to Question 1.

(a) We want to take the vectors x1 =


5
1
−3

1

 and x2 =


9
7
−5

5

, and convert them into orthogonal

vectors v1 and v2.

For the first vector, we choose

v1 = x1 =


5
1
−3

1


To make sure that v2 is orthogonal to v1, we want to take x2 and subtract the component
in the v1 direction.

v2 = x2 − projv1
(x2) = x2 −

v1 · v2

v1 · v1
v1

=


9
7
−5

5

−


5
1
−3

1

 ·


9
7
−5

5


52 + 12 + (−3)2 + 12

=


9
7
−5

5

− 72

36


5
1
−3

1

 =


−1

5
1
3


Now that we have orthogonal vectors v1 and v2, we can find their magnitudes:

‖v1‖ =
√

52 + 12 + (−3)2 + 12 =
√

36 = 6

‖v2‖ =
√

(−1)2 + 52 + 12 + 32 =
√

36 = 6

So the orthonormal basis is

u1 =
v1

‖v1‖
=


5/6
1/6
−3/6

1/6



u2 =
v2

‖v2‖
=


−1/6

5/6
1/6
3/6


(b) To find Q, we can just combine the colums we found in part (a)

Q =


5/6 −1/6
1/6 5/6
−3/6 1/6

1/6 3/6


To find R, we note that

A = QR
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Multiplying both sides on the left by QT ,

QTA = QTQR = IR = R

So we can compute

R = QTA =

[
5/6 1/6 −3/6 1/6
−1/6 5/6 1/6 3/6

]
5 9
1 7
−3 −5

1 5

 =

[
6 12
0 6

]

Therefore the QR factorization of A is:

A = QR =


5/6 −1/6
1/6 5/6
−3/6 1/6

1/6 3/6

[6 12
0 6

]

(c) First we note that the least-squares system is equivalent to solving

Ax = QQTb

Using the QR factorization,
QRx = QQTb

Multiplying both sides on the left by QT ,

QTQRx = QTQQTb

Rx = QTb

First we compute

QTb =

[
5/6 1/6 −3/6 1/6
−1/6 5/6 1/6 3/6

]
−1

2
1
6

 =

[ −5+2−3+6
6

1+10+1+18
6

]
=

[
0
5

]

So we want to solve the system

Rx = QTb[
6 12
0 6

]
x =

[
0
5

]
Setting up the augmented matrix and row reducing,[

6 12 0
0 6 5

]
R1−2·R2−−−−−→

[
6 0 −10
0 6 5

]
1
6
·R2
−−−→

[
6 0 −10
0 1 5/6

]
1
6
·R1
−−−→

[
1 0 −10/6
0 1 5/6

]

Therefore the least-squares solution is

[
−10/6

5/6

]
.
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Answer to Question 2. First, we know that

A = QR

Multiplying both sides on the left by QT ,

QTA = QTQR = IR = R

Since the columns of A are linearly dependent, we know that there exists a non-zero vector x such
that Ax = 0. However, this means

Rx = QTAx = QT (Ax) = QT0 = 0

Since there is a non-zero vector x such that Rx = 0, this implies that R is not invertible.

Answer to Question 3. We can find least-squares solutions as solutions of the system ATAx =
ATb.
We can compute

ATA =

 1 1 1
−3 5 7
−3 1 2

1 −3 −3
1 5 1
1 7 2

 =

3 9 0
9 83 28
0 28 14


and

ATb =

 1 1 1
−3 5 7
−3 1 2

 5
−3
−5

 =

 −3
−65
−28


Setting up the augmented matrix for ATAx = ATb and row reducing,3 9 0 −3

9 83 28 −65
0 28 14 −28

 1
3
·R1
−−−→

1 3 0 −1
9 83 28 −65
0 28 14 −28

 1
14

·R3
−−−−→

1 3 0 −1
9 83 28 −65
0 2 1 −2


R2−9·R1−−−−−→

1 3 0 −1
0 56 28 −56
0 2 1 −2

 1
28

·R2
−−−−→

1 3 0 −1
0 2 1 −2
0 2 1 −2

 R3−R2−−−−→

1 3 0 −1
0 2 1 −2
0 0 0 0


1
2
·R2
−−−→

1 3 0 −1
0 1 1/2 −1
0 0 0 0

 R1−3·R2−−−−−→

1 0 −3/2 2
0 1 1/2 −1
0 0 0 0


Since there is a free variable, we see that there are actually inifinitely many least-squares solutions
to this problem.

To choose a specific one, we can set x3 = 0 to get a least squares solution x̂ =

 2
−1

0

.

We can also check that Ax̂ = b exactly, so the associated least-squares error is zero.
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Answer to Question 4. First we want to compute the SVD of the matrix A =

3 2
2 3
2 −2

.

We compute

ATA =

[
3 2 2
2 3 −2

]3 2
2 3
2 −2

 =

[
17 8
8 17

]
To find the singular values of A, we can compute the eigenvalues of ATA as follows

det(ATA− λI) = det

([
17− λ 8

8 17− λ

])
= (17− λ)2 − 82 = 0

(17− λ)2 = 82

17− λ = ±8

λ = 25, 9

So the singular values are σ1 =
√

25 = 5 and σ2 =
√

9 = 3, and Σ =

5 0
0 3
0 0

.

To find the right singular vectors, we want to find the eigenvectors of ATA. For the first eigenvector,

A− 25I =

[
−8 8

8 −8

]
∼
[
1 −1
0 0

]

Therefore the first right singular vector is proportional to

[
1
1

]
. Normalizing, we get

v1 =

[
1/
√

2

1/
√

2

]
For the second eigenvector,

A− 9I =

[
8 8
8 8

]
∼
[
1 1
0 0

]
Therefore the first right singular vector is proportional to

[
1
−1

]
. Normalizing, we get

v2 =

[
1/
√

2

−1/
√

2

]

and therefore V =

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

]
.

We can compute the first two singular vectors as

u1 =
1

σ1
Av1 =

1

5

3 2
2 3
2 −2

[1/√2

1/
√

2

]
=

1/
√

2

1/
√

2
0

u2 =
1

σ2
Av2 =

1

3

3 2
2 3
2 −2

[ 1/
√

2

−1/
√

2

]
=

1

3

 1/
√

2

−1/
√

2

4/
√

2

 =

 1/3
√

2

−1/3
√

2

4/3
√

2



8



For the third singular vector, we need to find a vector orthogonal to u1 and u2. This is equivalent
to the system of equations[

1/3
√

2 −1/3
√

2 4/3
√

2 0

1/
√

2 1/
√

2 0 0

]
∼
[
1 −1 4 0
1 1 0 0

]
∼
[
1 −1 4 0
0 2 −4 0

]
∼
[
1 0 2 0
0 1 −2 0

]

So we see that x1 = −2x3 and x2 = 2x3. Setting x3 = 1, we see that

−2
2
1

 is orthogonal to u1

and u2. Normalizing,

u3 =

−2/3
2/3
1/3


And therefore U =

1/
√

2 1/3
√

2 −2/3

1/
√

2 −1/3
√

2 2/3

0 4/3
√

2 1/3

.

So the singular value decomposition is

A = UΣV T =

1/
√

2 1/3
√

2 −2/3

1/
√

2 −1/3
√

2 2/3

0 4/3
√

2 1/3

5 0
0 3
0 0

[1/√2 1/
√

2

1/
√

2 −1/
√

2

]

We recall that the set D = {v ∈ R2 : ‖v‖ = 1}, which is just the unit circle in R2:

To determine what the transformation T does to the set D, we will figure out what each individual
part of the SVD of T does to the set D.

First, since V T =

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

]
corresponds to a rotation, this won’t change the set D.

Then, Σ =

5 0
0 3
0 0

 will transform D from a circle in R2 to an ellipse in R3. The ellipse will actually

lie entirely in the xy-plane, with a major axis of

5
0
0

 and a minor axis of

0
3
0

:

9



You can find an interactive version of this plot at https://www.math3d.org/6PgGSXbQ

Finally, U =

1/
√

2 1/3
√

2 −2/3

1/
√

2 −1/3
√

2 2/3

0 4/3
√

2 1/3

 will rotate the major axis to the vector u1 =

1/
√

2

1/
√

2
0

, and

rotate the minor axis to the vector u1 =

 1/3
√

2

−1/3
√

2

4/3
√

2

:

You can find an interactive version of this plot at https://www.math3d.org/Vq5qsBSx
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