
Math 2940 Worksheet
Complex Eigenvalues, Dynamical Systems

Week 12

November 14th, 2019

This worksheet covers material from Sections 5.5 - 5.7. Please work in collaboration with your
classmates to complete the following exercises - this means sharing ideas and asking each other
questions.

Question 1. Show that if a and b are real, then the eigenvalues of A =

[
a −b
b a

]
are a ± bi, with

corresponding eigenvectors

[
1
−i

]
and

[
1
i

]
.
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Question 2. The matrix A below has eigenvalues 1, 2
3 , and 1

3 , with corresponding eigenvectors v1,
v2, and v3:

A =
1

9

 7 −2 0
−2 6 2

0 2 5

 , v1 =

−2
2
1

 , v2 =

2
1
2

 , v3 =

 1
2
−2



(a) Find the solution of the equation xk+1 = Axk if x0 =

 1
11
−2

.

(b) What happens to the sequence {xk} from part (a) as k →∞?

(c) Would your answer to part (b) be the same for all values of x0? Why or why not?
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Question 3. Here we are interested in how the populations of two species change over time. Let
x(t) represent the population of prey, and y(t) represent the population of predators.

Suppose that the change in populations over time can be described by the following linear system
of differential equations:

x′ = 7x− y
y′ = 3x+ 3y

Given the initial conditions

[
x(0)
y(0)

]
=

[
3
2

]
, find the solution to this system of differential equations.
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Question 4. Let A =

[
−3 2
−1 −1

]
.

(a) Construct the general solution of x′ = Ax involving complex eigenfunctions

(b) Using your answer to part (a), obtain the general real solution
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Question 5.

(a) Not every matrix is diagonalizable. Consider the matrix A =

[
3 −1
1 1

]
. Compute the eigen-

values of A and compute the corresponding eigenvector. How many distinct eigenvalues and
eigenvectors does A have?

(b) On the other hand, consider the matrix B =

2 −1 1
0 2 0
0 −1 3

 . How many distinct eigenvalues

and eigenvectors does B have?
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(c) Write down the fundamental solution to the initial value problem

x′ = Ax, x(0) =

[
1
0

]

where A =

[
3 −1
1 1

]
is the matrix from part (a).
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Answer to Question 1. To find the eigenvalues, we calculate the roots of the characteristic
equation:

det(A− λI) = det

([
a− λ −b
b a− λ

])
= 0

(a− λ)2 + b2 = 0

λ2 − 2aλ+ a2 + b2 = 0

Using the quadratic formula,

λ =
2a±

√
4a2 − 4(a2 + b2)

2
=

2a±
√
−4b2

2

So the eigenvalues are:
λ = a± bi

Now, to find the eigenvalue associated with λ1 = a+ bi, we compute the nullspace of A− λ1I

A− (a+ bi)I =

[
a− (a+ bi) −b

b a− (a+ bi)

]
=

[
−bi −b
b −bi

]
Row reducing, [

−bi −b
b −bi

]
i· R1−−−→

[
b −bi
b −bi

]
R2 - R1−−−−−→

[
b −bi
0 0

]
So the nullspace is described by the equation bx1 − bix2 = 0. Choosing x1 = 1, it follows that
x2 = −i.

Therefore

[
1
−i

]
is an eigenvector with eigenvalue a+ bi

Similarly for the other eigenvalue, we compute the nullspace of A− λ2I as

A− (a− bi)I =

[
a− (a− bi) −b

b a− (a− bi)

]
=

[
bi −b
b bi

]
Row reducing, [

bi −b
b bi

]
i· R1−−−→

[
−b −bi
b bi

]
R2 + R1−−−−−→

[
−b −bi
0 0

]
So the nullspace is described by the equation −bx1 − bix2 = 0. Choosing x1 = 1, it follows that
x2 = i.

Therefore

[
1
i

]
is an eigenvector with eigenvalue a− bi
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Answer to Question 2.

(a) First we want to write the initial conditions x0 in terms of the eigenvectors, i.e. find constants
c such that

x0 = c1v1 + c2v2 + c3v3 1
11
−2

 = c1

−2
2
1

+ c2

2
1
2

+ c3

 1
2
−2


This is equivalent to the augmented matrix:−2 2 1 1

2 1 2 11
1 2 −2 −2


Row reducing,−2 2 1 1

2 1 2 11
1 2 −2 −2

 R2 + R1−−−−−→

−2 2 1 1
0 3 3 12
1 2 −2 −2

 R3 + 1
2
R1

−−−−−−→

−2 2 1 1
0 3 3 12
0 3 −3/2 −3/2


R3-R2−−−−→

−2 2 1 1
0 3 3 12
0 0 −9/2 −27/2

 −2
9
R3

−−−→

−2 2 1 1
0 3 3 12
0 0 1 3

 1
3
R2
−−−→

−2 2 1 1
0 1 1 4
0 0 1 3


R2-R3−−−−→

−2 2 1 1
0 1 0 1
0 0 1 3

 R1-R3−−−−→

−2 2 0 −2
0 1 0 1
0 0 1 3

 −1
2
R1

−−−→

1 −1 0 1
0 1 0 1
0 0 1 3


R1+R2−−−−→

1 0 0 2
0 1 0 1
0 0 1 3


Therefore the initial condition can be written in terms of the eigenvectors as:

x0 = 2

−2
2
1

+ 1

2
1
2

+ 3

 1
2
−2


Using the eigenvalues and eigenvectors, we can compute

xk = Akx0 = 2(1)k

−2
2
1

+

(
2

3

)k 2
1
2

+ 3

(
1

3

)k  1
2
−2


Note: This is equivalent to computing the diagonalization A = PDP−1, and then finding the
solution as xk = PDkP−1x0.

• Computing P−1x0 is equivalent to finding the coefficients c1, c2, and c3.

• Multiplying by Dk contributes the eigenvalue to the k-th power terms above

• Multiplying by P contributes the eigenvectors in the above solution.
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(b) As k →∞, we see that both the
(
2
3

)k
and

(
1
3

)k
terms will go to zero, leaving

lim
k→∞

xk = 2

−2
2
1

 =

−4
4
2


(c) If we write the initial conditions as x0 = c1v1+c2v2+c3v3, then we can see from the previous

problems that

lim
k→∞

xk = c1

−2
2
1


Since c1 clearly does depend upon the value of x0, then

No, our answer would not be the same for all values of x0.

Answer to Question 3. First, we can write this linear system of differential equations in matrix
form as [

x
y

]′
=

[
7 −1
3 3

] [
x
y

]
Now we want to compute the eigenvalues and eigenvectors of A =

[
7 −1
3 3

]
. Finding the roots of

the characteristic equation,

det (A− λI) = 0

det

([
7− λ −1

3 3− λ

])
= 0

(7− λ)(3− λ) + 3 = 0

λ2 − 10λ+ 24 = 0

(λ− 4)(λ− 6) = 0

So we can see that the two eigenvalues are λ = 4 and λ = 6.

To find the eigenvector corresponding to λ = 4, we find the nullspace of A− 4I by row reducing:

A− 4I =

[
3 −1
3 −1

]
R2 - R1−−−−−→

[
3 −1
0 0

]
Plugging x1 = 1 into 3x1 − x2 = 0, we get that x2 = 3, and therefore[

1
3

]
is an eigenvector of A with eigenvalue λ = 4

Similarly, we find the eigenvector corresponding to λ = 6,

A− 6I =

[
1 −1
3 −3

]
R2 - 3·R1−−−−−−→

[
1 −1
0 0

]
Plugging x1 = 1 into x1 − x2 = 0, we get that x2 = 1, and therefore[

1
1

]
is an eigenvector of A with eigenvalue λ = 6
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We can put these together to get that the general solution is:[
x(t)
y(t)

]
= c1

[
1
3

]
e4t + c2

[
1
1

]
e6t

for some constants c1 and c2.

Plugging in the initial conditions at t = 0, we get that

x(0) = c1 + c2 = 3

y(0) = 3c1 + c2 = 2

Putting this in augmented matrix form and row reducing,[
1 1 3
3 1 2

]
R2 - R1−−−−−→

[
1 1 3
2 0 −1

]
1
2
· R2
−−−→

[
1 1 3
1 0 −1

2

]
R1 - R2−−−−−→

[
0 1 7

2
1 0 −1

2

]
From this we can see that c1 = −1

2 and c2 = 7
2 , so the solution to this initial value problem is[

x(t)
y(t)

]
= −1

2

[
1
3

]
e4t +

7

2

[
1
1

]
e6t

Answer to Question 4.

(a) First, we find the eigenvalues of A by finding the roots of the characteristic equation:

det(A− λI) = 0

det

([
−3− λ 2
−1 −1− λ

])
= 0

(−3− λ)(−1− λ) + 2 = 0

λ2 + 4λ+ 5 = 0

Using the quadratic formula, the eigenvalues are

λ =
−4±

√
16− 20

2
=
−4±

√
−4

2
= −2± i

First we find the eigenvector associated to λ = −2 + i

A− (−2 + i)I =

[
−1− i 2
−1 1− i

]
(−1+i)· R1−−−−−−−→

[
2 −2 + 2i
−1 1− i

]
R2 + 1

2
· R1

−−−−−−−→
[
2 −2 + 2i
0 0

]
Plugging x2 = 1 into 2x1 + (−2 + 2i)x2 = 0, we get that x1 = 1− i, and therefore[

1− i
1

]
is an eigenvector of A with eigenvalue λ = −2 + i

Now to find the eigenvector associated to λ = −2− i

A− (−2− i)I =

[
−1 + i 2
−1 1 + i

]
(−1−i)· R1−−−−−−−→

[
2 −2− 2i
−1 1 + i

]
R2 + 1

2
· R1

−−−−−−−→
[
2 −2− 2i
0 0

]
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Plugging x2 = 1 into 2x1 + (−2− 2i)x2 = 0, we get that x1 = 1 + i, and therefore[
1 + i

1

]
is an eigenvector of A with eigenvalue λ = −2− i

Putting these together, the general solution using complex eigenfunctions is:

x(t) = c1

[
1− i

1

]
e(−2+i)t + c2

[
1 + i

1

]
e(−2−i)t

(b) To obtain the general real solution, we want to split up the first fundamental solution into
real and imaginary parts: [

1− i
1

]
e(−2+i)t = Re(t) + i · Im(t)

Expanding the left hand side using Euler’s formula eiθ = cos(θ) + i sin(θ),

=

[
1− i

1

]
e−2t cos(t) + i

[
1− i

1

]
e−2t sin(t)

=

[
1
1

]
e−2t cos(t) + i

[
−1
0

]
e−2t cos(t) + i

[
1
1

]
e−2t sin(t) +

[
1
0

]
e−2t sin(t)

Rearranging,

=

[
cos(t) + sin(t)

cos(t)

]
e−2t + i

[
sin(t)− cos(t)

sin(t)

]
e−2t

Therefore the real and imaginary parts are:

Re(t) =

[
cos(t) + sin(t)

cos(t)

]
e−2t, and Im(t) =

[
sin(t)− cos(t)

sin(t)

]
e−2t

And we can use these to construct the general real solution:

x(t) = c1

[
cos(t) + sin(t)

cos(t)

]
e−2t + c2

[
sin(t)− cos(t)

sin(t)

]
e−2t
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Answer to Question 5.

(a) First we compute the eigenvalues and eigenvectors of A =

[
3 −1
1 1

]
.

Finding the roots of the characteristic equation,

det(A− λI) = 0

det

([
3− λ −1

1 1− λ

])
= 0

(3− λ)(1− λ) + 1 = 0

λ2 − 4λ+ 4 = 0

(λ− 2)2 = 0

So A only has the single distinct eigenvalue of λ = 2.

Finding the corresponding eigenvector(s),

A− 2I =

[
1 −1
1 −1

]
R2 - R1−−−−−→

[
1 −1
0 0

]
So the nullspace is described by x1 − x2 = 0. One possible non-zero solution is x1 = x2 = 1,
so therefore [

1
1

]
is the only eigenvector of A.

(b) Now to compute the eigenvalues and eigenvectors of B =

2 −1 1
0 2 0
0 −1 3

,

Finding the characteristic equation using a co-factor expansion in the first column,

det(B−λI) = det

2− λ −1 1
0 2− λ 0
0 −1 3− λ

 = (2−λ) det

([
2− λ 0
−1 3− λ

])
= (2−λ)2(3−λ) = 0

So there are two distinct eigenvalues: λ = 2 and λ = 3.

First, we find any eigenvectors associated to λ = 2,

B − 2I =

0 −1 1
0 0 0
0 −1 1

 R3 - R1−−−−−→

0 −1 1
0 0 0
0 0 0


So the nullspace is described by the equation −x2 + x3 = 0.

Because x1 is a free variable, we get a solution of x1 = 1, x2 = 0, and x3 = 0.

Setting x1 = 0 and plugging x3 = 1 into −x2 + x3 = 0, we get that x2 = 1. Therefore,

Both

1
0
0

 and

0
1
1

 are eigenvectors of B with eigenvalue λ = 2
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Now, we find any eigenvectors associated to λ = 3,

B − 3I =

−1 −1 1
0 −1 0
0 −1 0

 R3 - R2−−−−−→

−1 −1 1
0 −1 0
0 0 0

 R1 - R2−−−−−→

−1 0 1
0 −1 0
0 0 0


Setting the free variable x3 = 1, we get that x1 = 1 and x2 = 0, so1

0
1

 is an eigenvector of B with eigenvalue λ = 3

All together, there are three eigenvectors but only two distinct eigenvalues.

(c) Because A only has one eigenvector (see part (a)), we will be unable to fully diagonalize A.
Thus we will be unable to fully de-couple the equations for x1(t) and x2(t).

However, with the right change-of-coordinates, we can still “triangularize” the matrix A. This
will allow us to solve for x1(t), and then use our solution for x2(t) to solve for x1(t).

First, we will define a change-of-coordinates matrix P =

[
1 1
0 1

]
.

(The exact change-of-coordinates is not important, only that one of our columns correspond
to the eigenvector we found in part (a).)

We can then easily calculate that P−1 =

[
1 −1
0 1

]
Defining a new set of variables as Py(t) = x(t), we see that they satisfy the system of
equations

Py′(t) = APy(t)

Multiplying both sides on the left by P−1,

y′(t) = P−1APy(t)

Using matrix multiplication, we can compute

P−1AP =

[
1 −1
0 1

] [
3 −1
1 1

] [
1 1
0 1

]
=

[
1 −1
0 1

] [
3 2
1 2

]
=

[
2 0
1 2

]
Therefore our system of equations is[

y′1(t)
y′2(t)

]
=

[
2 0
1 2

] [
y1
y2

]
The first equation is simply y′1 = 2y1, which has a solution of

y1(t) = c1e
2t

Plugging that into the second equation, we get

y′2 = c1e
2t + 2y2
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This is a first-order linear ODE, so we can solve it using integrating factors. Rearranging,

y′2 − 2y2 = c1e
2t

Multiplying both sides by e−2t,

e−2ty′2 − 2e−2ty2 = c1

Using the product rule (in reverse) on the left hand side,

d

dt

(
e−2ty2

)
= c1

Integrating both sides,
e−2ty2 = c1t+ c2

Multiplying both sides by e2t,
y2 = c1te

2t + c2e
2t

And therefore our general solution is[
y1(t)
y2(t)

]
=

[
c1e

2t

c1te
2t + c2e

2t

]
Undoing our change-of-coordinates,

x = Py =

[
1 1
0 1

] [
c1e

2t

c1te
2t + c2e

2t

]
=

[
c1te

2t + (c1 + c2)e
2t

c1te
2t + c2e

2t

]

Plugging in the initial conditions x(0) =

[
1
0

]
,

x(0) =

[
c1(0)e0 + (c1 + c2)e

0

c1(0)e0 + c2e
0

]
=

[
c1 + c2
c2

]
=

[
1
0

]
So clearly c1 = 1 and c2 = 0. Therefore the solution is

x =

[
te2t + e2t

te2t

]
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