
Math 2940 Worksheet
Eigenvalues and Eigenvectors

Week 11

November 7th, 2019

This worksheet covers material from Sections 5.1 - 5.3. Please work in collaboration with your
classmates to complete the following exercises - this means sharing ideas and asking each other
questions.

Question 1.

(a) Find the characteristic equation and eigenvalues of A =

[
10 −9
4 −2

]
.

(b) Using your answer from part(a), find any eigenvectors of A.
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Question 2. Without writing down the matrix, what, if anything, can you say about the eigenvalues
and eigenvectors of the following linear transformations?

(a) T : R2 → R2 stretches images by a factor of 2 horizontally, and by a factor of 3 vertically.

(b) T : R2 → R2 reflects everything across the x-axis.

(c) T : R2 → R2 rotates everything around the origin by 90◦ clockwise.
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Question 3. Let A =

[
−3 12
−2 7

]
, v1 =

[
3
1

]
, and v2 =

[
2
1

]
. Suppose you are told that v1 and v2

are eigenvectors of A. Use this information to diagonalize A.

Question 4.

(a) Consider the following matrix equation:[
an
an+1

]
=

[
0 1
1 1

] [
an−1
an

]
Starting with a0 = a1 = 1, use the above equation to compute some more values of an. Do
you notice a pattern?
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To compute large values of an, we can see that:[
an
an+1

]
=

[
0 1
1 1

] [
an−1
an

]
=

[
0 1
1 1

]2 [
an−2
an−1

]
= · · · =

[
0 1
1 1

]n [
1
1

]
However, for large values of n, it would be very tedious and time-consuming to compute[
0 1
1 1

]n
directly.

Instead, we want to diagonalize the matrix A =

[
0 1
1 1

]
as PDP−1.

(b) First, compute the eigenvalues of A =

[
0 1
1 1

]

(c) Show that the eigenvectors of A are

[
2

1 +
√

5

]
and

[
2

1−
√

5

]
.

(d) Use your answers from parts (b) and (c) to diagonalize

[
0 1
1 1

]n
.
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(e) Combine your answers from the previous parts to show that

an =
1√
5

(
1 +
√

5

2

)n+1

− 1√
5

(
1−
√

5

2

)n+1

(Hint : An = PDnP−1)

(f) Given that 1−
√
5

2 ≈ −0.618 and 1+
√
5

2 ≈ 1.618, explain why

lim
n→∞

an+1

an
≈ 1.618

(Fun fact: ϕ = 1+
√
5

2 is also known as the golden ratio.)
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Question 5. A quasi upper triangular matrix is a matrix that has 1 × 1 or 2 × 2 blocks on the
diagonal and 0 below these blocks. Two examples of a 4× 4 quasi upper triangular matrix are:

× × × ×
0 × × ×
0 × × ×
0 0 0 ×

 ,

× × × ×
0 × × ×
0 0 × ×
0 0 × ×

 .

(a) When we solve a linear system with an upper triangular matrix, we can use back substitution
to solve it fast. Is it possible to generalize back substitution so that we can also solve linear
system with quasi upper triangular matrix fast?

The real Schur decomposition of an n × n matrix A is to factorize A = UTUT , where
U, T ∈ Rn×n, U is orthogonal, and T is a quasi upper triangular matrix. (Recall that for a
square orthogonal matrix V , V −1 = V T .)

(b) Are the eigenvalues of A and T related? How can you tell what the eigenvalues of T are?

Comparatively, a complex Schur decomposition of A is A = UTUT , where U is orthogonal,
and T is upper triangular.
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Answer to Question 1.

(a) First, we find the characteristic equation:

det(A− λI) = 0

det

([
10 −9
4 −2

]
− λ

[
1 0
0 1

])
= 0

det

([
10− λ −9

4 −2− λ

])
= 0

(10− λ)(−2− λ) + 36 = 0

−20− 8λ+ λ2 + 36 = 0

λ2 − 8λ+ 16 = 0

Now to find the eigenvalues, we find the roots of the characteristic equation, which factors as:

(λ− 4)2 = 0

So the only eigenvalue is λ = 4.

(b) To find the eigenvector(s), we want to find a basis for the nullspace of A− λI:

A− λI =

[
10− 4 −9

4 −2− 4

]
=

[
6 −9
4 −6

]
Row reducing,

∼
[
2 −3
4 −6

]
∼
[
2 −3
0 0

]
This means elements of the nullspace of A − λI satisfy 2x1 − 3x2 = 0. So the nullspace can
be written in parametric form as [

x1
x2

]
= x2

[
3/2
1

]
i.e. Null(A− λI) = Span

([
3/2
1

])

Therefore,

[
3/2
1

]
is the only eigenvector corresponding to λ = 4.

Answer to Question 2.

(a) Because T stretches images by a factor of 2 horizontally, this means that anything on the
x-axis is multiplied by a factor of 2. This means

T

([
1
0

])
=

[
2
0

]
= 2

[
1
0

]
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So

[
1
0

]
is an eigenvector with eigenvalue λ = 2.

Similarly, T stretches images by a factor of 3 vertically, so

T

([
0
1

])
=

[
0
3

]
= 3

[
0
1

]

and

[
0
1

]
is an eigenvector with eigenvalue λ = 3.

(b) Since T is a reflection across the x-axis, everything on the x-axis will remain unchanged under
T . This means

T

([
1
0

])
=

[
1
0

]

and

[
1
0

]
is an eigenvector with eigenvalue λ = 1.

However, anything on the y-axis is flipped, so

T

([
0
1

])
=

[
0
−1

]
= −

[
0
1

]

which means

[
0
1

]
is an eigenvector with eigenvalue λ = −1.

(c) We can see that rotating any non-zero vector in R2 by 90◦ will always result in a vector that

is not a scalar multiple of the original. Therefore T has no real eigenvalues.

(It turns out that T does still have 2 eigenvalues, but they are imaginary.)

Answer to Question 3.
To compute the eigenvalues of A, we could find the roots of the characteristic equation as in
Question 1.

However, since we already have the eigenvectors v1 and v2, we can just check for the eigenvectors
by multiplying the original matrix A by v1 and v2, and seeing what the scalar multiple is:

Av1 =

[
−3 12
−2 7

] [
3
1

]
=

[
3
1

]
=⇒ λ1 = 1

Av2 =

[
−3 12
−2 7

] [
2
1

]
=

[
6
3

]
=⇒ λ2 = 3

Therefore, the diagonalization of A is:

A = PDP−1 =

[
3 2
1 1

] [
1 0
0 3

] [
3 2
1 1

]−1
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Answer to Question 4.

(a) Starting with a0 = a1 = 1, we can compute the next few entries in the series as follows:[
a1
a2

]
=

[
0 1
1 1

] [
1
1

]
=

[
1
2

]
=⇒ a2 = 2[

a2
a3

]
=

[
0 1
1 1

] [
1
2

]
=

[
2
3

]
=⇒ a3 = 3[

a3
a4

]
=

[
0 1
1 1

] [
2
3

]
=

[
3
5

]
=⇒ a4 = 5[

a4
a5

]
=

[
0 1
1 1

] [
3
5

]
=

[
5
8

]
=⇒ a5 = 8

The sequence 1, 1, 2, 3, 5, 8, ... is known as the Fibonacci numbers.

In fact, if we multiply out the equation:[
an
an+1

]
=

[
0 1
1 1

] [
an−1
an

]
=

[
an

an + an−1

]
the first equation (an = an) is a tautology, and the second equation (an+1 = an + an−1) is
exactly the equation describing the Fibonacci numbers.

(b) To compute the eigenvalues of

[
0 1
1 1

]
, we find the roots of the characteristic equation:

det(A− λI) = det

([
−λ 1
1 1− λ

])
= 0

−λ(1− λ)− 1 = λ2 − λ− 1 = 0

Using the quadratic formula,

λ =
−(−1)±

√
1− 4(1)(−1)

2(1)

and so the eigenvalues are:

λ =
1±
√

5

2

(c) We can check that these are eigenvectors as follows:[
0 1
1 1

] [
2

1 +
√

5

]
=

[
1 +
√

5

3 +
√

5

]
=

(
1 +
√

5

2

)[
2

1 +
√

5

]
[
0 1
1 1

] [
2

1−
√

5

]
=

[
1−
√

5

3−
√

5

]
=

(
1−
√

5

2

)[
2

1−
√

5

]

(d) Given the eigenvectors and eigenvalues, we can diagonalize A as

A = PDP−1 =

[
2 2

1 +
√

5 1−
√

5

][
1+
√
5

2 0

0 1−
√
5

2

] [
2 2

1 +
√

5 1−
√

5

]−1
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We can also compute that the inverse is:[
2 2

1 +
√

5 1−
√

5

]−1
=

1

4
√

5

[√
5− 1 2√
5 + 1 −2

]

(e) Combining our answers from the previous parts,[
an
an+1

]
=

[
0 1
1 1

]n [
1
1

]
=

1

4
√

5

[
2 2

1 +
√

5 1−
√

5

][
1+
√
5

2 0

0 1−
√
5

2

]n [√
5− 1 2√
5 + 1 −2

] [
1
1

]

=
1

4
√

5

[
2 2

1 +
√

5 1−
√

5

](1+
√
5

2

)n
0

0
(
1−
√
5

2

)n
[√5 + 1√

5− 1

]

=
1

4
√

5

[
2 2

1 +
√

5 1−
√

5

](
√

5 + 1)
(
1+
√
5

2

)n
(
√

5− 1)
(
1−
√
5

2

)n


Because we only need the first component, this becomes:

an =
1

4
√

5

[
(2
√

5 + 2)

(
1 +
√

5

2

)n

+ (2
√

5− 2)

(
1−
√

5

2

)n]

which we can simplify as:

an =
1√
5

(
1 +
√

5

2

)n+1

− 1√
5

(
1−
√

5

2

)n+1

(f) Substituting the approximate values into our result from the previous part,

an ≈
1√
5

(1.618...)n+1 − 1√
5

(−0.618...)n+1

We can see that as n becomes large, the 1.618n+1 part dominates, and

an ≈
1√
5

(1.618...)n+1 for large n

Therefore,
an+1

an
≈ (1.618...)n+2

(1.618...)n+1
= 1.618...

in other words,

lim
n→∞

an+1

an
=

1 +
√

5

2
≈ 1.618...
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Answer to Question 5.

(a) With back substitution, we solve for the value of one variable, “plug it in” to the next equation
and use it to find the value of the next variable, and repeat.

For quasi upper triangular matrices, we can do something similar, except sometimes solving
a 2× 2 system instead of solving for a single variable.

For example, with the matrix:


× × × ×
0 × × ×
0 × × ×
0 0 0 ×

, we would:

• Solve for x4

• Plug in x4, then solve 2× 2 system for x2 and x3

• Plug in x2 and x3, then solve for x1

(b) To compare the eigenvalues, we can compare the two characteristic equations:

det(T − λI) and det(UTUT − λI)

We can then rewrite the second one as:

det(UTUT − λI) = det(UTUT − λUUT )

= det(UTUT − UλIUT )

= det(U(T − λI)UT )

= det(U) det(T − λI) det(UT )

And since UT = U−1, we know that det(UT ) = det(U−1) = 1
det(U) , so

det(UTUT − λI) = det(T − λI)

and therefore A and T have the same characteristic equation, and thus the same eigenvalues.
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