
Math 2930 Worksheet
Variation of Parameters
Free Vibrations

Week 8

March 15th, 2019

Variation of Parameters Formulas

For a second-order nonhomogeneous equation

y′′ + p(t)y′ + q(t)y = g(t)

with complementary solution
yc = c1y1 + c2y2

the particular solution can be written as:

Y = u1y1 + u2y2

where
u′1(t) = − y2g

y1y′2 − y′1y2
, u′2(t) =

y1g

y1y′2 − y′1y2

Question 1. Use the method of variation of parameters to find the general solution of

y′′ + 4y′ + 4y =
1

t2
e−2t



Question 2. (a) Show that y1 = t2 and y2 = 1
t are solutions to the homogeneous equation

t2y′′ − 2y = 0

(b) Find the general solution of the non-homogeneous equation

t2y′′ − 2y = 3t2 − 1

using variation of parameters. (Remember, you already have the solution to the homogeneous
problem from part (a).)
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Question 3. A mass of 1 kg stretches a spring 8 cm. The mass is first pushed upward, contracting
the spring a distance of 2 cm, and then set in motion with a downward velocity of 60 cm/s. Assume
that there is no damping and no external force is applied.

(To make things easier, you can assume that g = 10m/s2. Remember to watch your units!)

(a) Find the position u(t) of the mass at any time t.

(b) Determine the period, frequency, and the amplitude of the motion.
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Question 4. The position of a certain undamped spring-mass system satisfies the initial value
problem:

u′′ + 2u = 0, u(0) = 0, u′(0) = 2

(a) Find the solution of this initial value problem

For the rest of this question, I would like you to use a graphing calculator (if you have one) or
an online graphing tool (I personally recommend desmos.com). Laptops/calculators are strongly
preferred, but you may use a smartphone if you have nothing else suitable.

(b) Plot u versus t and u′ versus t on the same axes.

• What do the graphs of u and u′ look like?

• What can you say about how the graphs of u and u′ are related?

(c) Now plot u′ versus u. By this I mean plot u(t) and u′(t) parametrically, with t as the parameter.
This plot is known as a phase plot, and the uu′ plane is called the phase plane.

(On Desmos, parametric plots should be formatted as (x(t), y(t)))

• What is the direction of motion on the phase plot as t increases?

• What does this graph tell you about the long-term behavior of u(t)?
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(d) Repeat parts (a) and (c) , but now with:

u′′ + u′ + 2u = 0, u(0) = 0, u′(0) = 2

• How has the phase plot changed?

• How has the long-term behavior of u(t) changed?
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Question 5. It’s actually possible to combine both reduction of order and variation of parameters
at once to find the general solution of a non-homogenous second-order equation with only one part
of the homogenous solution.

(a) Show that y1 = t is a solution of the corresponding homogenous equation for:

t2y′′ − 2ty′ + 2y = 4t2 (1)

(b) Let y(t) = v(t)y1(t) = vt, and plug this into Equation (1) to find a equation for v(t).

(c) Solve your equation from part (b) to find v(t). Then multiply v by y1 to get the general
solution of (1). You should see that this method simultaneously finds both the second part of the
homogenous solution y2 and a particular solution Y .
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Answer to Question 1. First, we want to solve the homogeneous problem to find y1(t) and y2(t).
The homogeneous equation is:

y′′ + 4y′ + 4y = 0

Now, we find the roots of the characteristic equation:

r2 + 4r + 4 = 0

(r + 2)2 = 0

r = −2

so we have a repeated root of r = −2, and our two fundamental solutions are:

y1(t) = e−2t, y2(t) = te−2t

Taking derivatives,
y′1(t) = −2e−2t, y′2(t) = e−2t − 2te−2t

From here, there are two different (but equivalent) ways of solving for u′1 and u′2.

Method 1: Formulas for u′1 and u′2

The first method is to use the formulas for u′1 and u′2 given at the top of the worksheet:

u′1(t) = − y2g

y1y′2 − y′1y2
, u′2(t) =

y1g

y1y′2 − y′1y2

(My apologies to the morning sections who had a typo in those formulas). These formulas both
have the same denominator, which is known as the Wronskian, and the textbook writes using the
notation:

W [y1, y2](t) = y1(t)y
′
2(t)− y′1(t)y2(t)

We aren’t covering the section about the Wronskian this semester, so you don’t need to know this,
but I did want to explain the W [y1, yw] notation that does pop up in the textbook section on
variation of parameters.
Anyway, we can compute the Wronskian as:

W [y1, y2](t) = y1(t)y
′
2(t)− y′1(t)y2(t)

=
(
e−2t

) (
e−2t − 2te−2t

)
−
(
−2te−2t

) (
te−2t

)
= e−4t − 2te−4t + 2te−4t

= e−4t

Now, we can compute u′1 using the formula:

u′1 = −y2g
W

=
−
(
te−2t

) (
1
t2
e−2t

)
e−4t

u′1 =
−1

t

which we can integrate to get
u1 = − ln(t) + C1

7



Computing u′2 using the formula:

u′2 =
y1g

W
=

(
e−2t

) (
1
t2
e−2t

)
e−4t

u′2 =
1

t2

which we can integrate to get

u2 =
−1

t
+ C2

Then our general solution is:

y = u1y1 + u2y2

y = (− ln(t) + C1) e
−2t +

(
−1

t
+ C2

)
te−2t

y = C1e
−2t + C2te

−2t − ln(t)e−2t − e−2t

Since C1 can be any constant, we can also simplify a little by combining the −e−2t term into the
C1e

−2t term to get:

y = C1e
−2t + C2te

−2t − ln(t)e−2t

Method 2: System of Equations

Instead of using the formulas for u′1 and u′2, we could also find them using the system of equations:

u′1y1 + u′2y2 = 0

u′1y
′
1 + u′2y

′
2 = g

substituting in y1, y2 and g for our specific problem,

u′1e
−2t + u′2te

−2t = 0

−2u′1e
−2t + u′2

(
e−2t − 2te−2t

)
=

1

t2
e−2t

Multiplying everything by e−2t,

u′1 + u′2t = 0

−2u′1 + u′2(1− 2t) =
1

t2

The first equation gives us
u′1 = −u′2t

substituting that into the second equation,

−− 2tu′2 + u′2 − 2tu′2 =
1

t2

u′2 =
1

t2

which we can integrate to get

u2 =
−1

t
+ C2
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Substituting back to find u′1, we get

u′1 = −tu′2 =
−1

t

Integrating both sides,
u1 = − ln(t) + C1

Then our general solution is:

y = u1y1 + u2y2

y = (− ln(t) + C1) e
−2t +

(
−1

t
+ C2

)
te−2t

y = C1e
−2t + C2te

−2t − ln(t)e−2t − e−2t

Since C1 can be any constant, we can also simplify a little by combining the −e−2t term into the
C1e

−2t term to get:

y = C1e
−2t + C2te

−2t − ln(t)e−2t

Answer to Question 2. (a) First, let’s show that y1 = t2 is a solution of the equation. Taking
derivatives,

y1 = t2

y′1 = 2t

y′′1 = 2

Plugging these into the differential equation,

t2y′′ − 2y = 0

t2(2)− 2(t2) = 0

0 = 0

So y1 = t2 is a solution.
Now to show that y2 = 1

t is a solution. Taking derivatives,

y2 =
1

t

y′2 =
−1

t2

y′′2 =
2

t3

Plugging these into the differential equation,

t2y′′ − 2y = 0

t2
(

2

t3

)
− 2

(
1

t

)
= 0

0 = 0

So y2 = 1
t is a solution.
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(b) Important : The formulas I gave you are for the case when there is no coefficient in front of y′′.
Because of that, we should take our equation and divide everything by t2 to get

y′′ − 2

t2
y = 3− 1

t2

We already have from part (a) that

y1 = t2, y2 =
1

t

Taking derivatives,

y′1 = 2t, y′2 =
−1

t2

As with Question 1, there are two different (but equivalent) ways of proceeding here:

Method 1: Formulas for u′1 and u′2

First, we calculate the Wronskian term (i.e. the denominator):

W [y1, y2](t) = y1y
′
2 − y′1y2

= t2
(
−1

t2

)
− 2t

(
1

t

)
= −3

Then using our formula for u′1, we compute

u′1 =
−y2g
W

= −
(

1

t

)(
1

−3

)(
3− 1

t2

)
u′1 =

1

t
− 1

3t3

Integrating to get u1,

u1 = ln(t) +
1

6t2
+ C1

Now, using our formula for u′2, we compute

u′2 =
y1g

W
=

t2

−3

(
3− 1

t2

)
u′2 =

1

3
− t2

Integrating both sides,

u2 =
t

3
− t3

3
+ C2

Putting this together, we get that our general solution is:

y = u1y1 + u2y2

y =

(
ln(t) +

1

6t2
+ C1

)
t2 +

(
t

3
− t3

3
+ C2

)
1

t
y = C1t

2 +
C2

t
+

1

2
− t2

3
+ t2 ln(t)

Since we can pull the − t2

3 term into the C1t
2 term, an equivalent general solution is

y = C1t
2 +

C2

t
+

1

2
+ t2 ln(t)
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Method 2: System of Equations

This time I want to walk through the derivation of variation of parameters again, to show what
happens with the t2 term out in front. You don’t need to show all of this work every time.
We want to find solutions of the form

y = u1y1 + u2y2

We’ll want to plug our guess for y into the differential equation, so first let’s take the derivative

y′ = u′1y1 + u′2y2 + u1y
′
1 + u2y

′
2

Now, since we have two functions u1 and u2 to solve for, but only one equation, we have an extra
“degree of freedom” to work with. In order to simplify things, we will use one of those “degrees of
freedom” to set:

u′1y1 + u′2y2 = 0 (2)

This leaves us with
y′ = u1y

′
1 + u2y

′
2

Taking a derivative again, we get

y′′ = u′1y
′
1 + u′2y

′
2 + u1y

′′
1 + u2y

′′
2

So plugging this into our differential equation,

t2y′′ − 2y = t2
(
u′1y
′
1 + u′2y

′
2 + u1y

′′
1 + u2y

′′
2

)
− 2 (u1y1 + u2y2) = 3t2 − 1

Rearranging,
t2
(
u′1y
′
1 + y′2y

′
2

)
+ u1

(
t2y′′1 − 2y1

)
+ u2

(
t2y′′2 − 2y2

)
= 3t2 − 1

Now, since we know that y1 and y2 are solutions to the homogeneous equation, the u1 and u2 terms
are multiplied by zero, so we are just left with:

t2
(
u′1y
′
1 + u′2y

′
2

)
= 3t2 − 1 (3)

Equations (2) and (3) now form a system of equations that we can solve for u′1 and u′2. Plugging
in for y1 and y2, this gives the system of equations:

t2u′1 +
1

t
u′2 = 0

2t3u′1 − u′2 = 3t2 − 1

Adding t times the first equation to the second, we get that

3t3u′1 = 3t2 − 1

so

u′1 =
1

t
− 1

3t3

Integrating to get u1,

u1 = ln(t) +
1

6t2
+ C1
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We can now substitute into the first equation to get:

u′2 = −t3u′1 = −t3
(

1

t
− 1

3t3

)
=

1

3
− t2

Integrating to get u2,

u2 =
t

3
− t3

3
+ C2

Putting this together, we get that our general solution is:

y = u1y1 + u2y2

y =

(
ln(t) +

1

6t2
+ C1

)
t2 +

(
t

3
− t3

3
+ C2

)
1

t
y = C1t

2 +
C2

t
+

1

2
− t2

3
+ t2 ln(t)

Since we can pull the − t2

3 term into the C1t
2 term, an equivalent general solution is

y = C1t
2 +

C2

t
+

1

2
+ t2 ln(t)

Answer to Question 3. I’m going to do this problem symbolically, and only substitute in numbers
at the very end. It’s an old habit drilled into me by my former high school physics teacher.
Personally, I much prefer doing it this way, but you don’t have to do these problems the exact same
way that I do.
(a) First, we want to calculate the spring constant k. At equilibrium, the spring is stretched a
distance L, so there is a spring force acting upward on the mass with magnitude kL. There is also
a gravitational force on the mass of mg. At equilibrium, these forces cancel each other out, so we
have

mg − kL = 0

Which we can solve for k:
k =

mg

L

Now that we have the spring constant k, we’ll want to use this to get a differential equation. Let
u be the displacement of the mass from equilibrium. Then the spring exerts a force on the mass of
−ku (negative since the force is in the opposite direction of the displacement). So Newton’s second
law says that:

mu′′ = −ku

(Note that because we are measuring u as displacement from equilibrium, we don’t have to worry
about a gravity term here).
Using our value of k = mg

L , we can rewrite our differential equation for u as:

mu′′ +
mg

L
u = 0

or equivalently,

u′′ +
g

L
u = 0

The characteristic equation here is:

r2 +
g

L
= 0
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which (since g and L are positive), we can solve as follows:

r2 = − g
L

r = ±
√
− g
L

r = ±
√
g

L
i

Which tells us that

u(t) = C1 cos

(√
g

L
t

)
+ C2 sin

(√
g

L
t

)
Plugging in our initial position u(0) = u0,

u(0) = C1 = u0

And plugging in our initial velocity u′(0) = v0,

u′(0) = C2

√
g

L
= v0

C2 = v0

√
L

g

So our position u(t) is:

u(t) = u0 cos

(√
g

L
t

)
+ v0

√
L

g
sin

(√
g

L
t

)
Substituting in the actual values here, I’m going to consistently do everything in meters. The
problem statement gives us that:

u0 = 0.02m, v0 = −0.6
m

s
, g = 10

m

s2
, L = 0.08m

Plugging this in, u(t) = 0.02 cos
(

5
√

5t
)
− 0.6

5
√

5
sin
(

5
√

5t
)

(b) From our solution for u(t), we have that the frequency is:

ω =

√
g

L
= 5
√

5
radians

second

The period is:

T =
2π

ω
= 2π

√
L

g
=

2π

5
√

5
seconds

And the amplitude is:

√
A2 +B2 =

√
u20 +

v20L

g
=

√
(0.02)2 +

(−0.6)2(0.08)

10
meters
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Answer to Question 4.
(a) We want to find the solution of

u′′ + 2u = 0, u(0) = 0, u′(0) = 2

Solving for the roots of the characteristic polynomial,

r2 + 2 = 0

r2 = −2

r = ±
√

2i

The corresponding general solution is

u(t) = c1 cos(
√

2t) + c2 sin(
√

2t)

Plugging in the initial condition u(0) = 0,

u(0) = c1 cos(0) + c2 sin(0) = 0

c1 = 0

Then plugging in the initial condition u′(0) = 2,

u′(t) = −
√

2c1 sin(
√

2t) +
√

2c2 cos(
√

2t)

u′(0) = −
√

2c1 sin(0) +
√

2c2 cos(0) = 2
√

2c2 = 2

c2 =
√

2

So the specific solution to this IVP is

u(t) =
√

2 sin(
√

2t)

(b) The two functions we want to graph are

u(t) =
√

2 sin(
√

2t)

u′(t) = 2 cos(
√

2t)

Graphed on the same axes, with u in blue and u′ in orange
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(c) If u and u′ are plotted parametrically, the result is an ellipse:

Here, u(t) and u′(t) being periodic functions in t corresponds to this being a closed curve in the
phase plane.
Increasing t corresponds to travelling clockwise around the ellipse.

(d) Now we want to repeat this with

u′′ + u′ + 2u = 0, u(0) = 0, u′(0) = 2

Solving for the roots of the characteristic equation,

r2 + r + 2 = 0

r =
−1±

√
1− 8

2

r =
−1

2
±
√

7i

This has corresponding general solution

u(t) = c1e
−t/2 cos(

√
7t) + c2e

−t/2 sin(
√

7t)

Plugging in u(0) = 0 gets us that c1 = 0, so

u(t) = c2e
−t/2 sin(

√
7t/)

differentiating,

u′(t) =
−c2

2
e−t/2 sin(

√
7t) +

√
7c2e

−t/2 cos(
√

7t)

Plugging in t = 0,
u′(0) =

√
7c2 = 2

c2 =
2√
7

So the solution to this IVP is

u(t) =
2√
7
e−t/2 sin(

√
7t)

Then the graph of u′ versus u in the phase plane is this inward spiral:
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which tells us that the solution tends toward u = 0, u′ = 0 as t→∞.

Answer to Question 5. (a) Let’s check that y1 = t is a solution of the homogeneous equation.
Taking derivatives,

y1 = t

y′1 = 1

y′′1 = 0

Plugging this into the homogeneous equation,

t2y′′ − 2ty′ + 2y = 0

t2(0)− 2t(1) + 2(t) = 0

0 = 0

So y1 = t is a solution of the homogeneous equation.

(b) Taking derivatives,

y = vt

y′ = v′t+ v′

y′′ = v′′t+ 2v′

Plugging this into the differential equation, we get

t2
(
v′′t+ 2v′

)
− 2t

(
v′t+ v

)
+ 2(vt) = 4t2

After cancelling out terms, we are left with

t3v′′ = 4t2

which we can simplify to

v′′ =
4

t

(c) Normally, we would also have some v′ terms, and so would have to solve a first-order equation
in v′. However, in this case those all happened to cancel out, so to solve this we just have to
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integrate twice:

v′′ =
4

t
v′ = 4 ln(t) + C1

v = 4(t ln(t)− t) + C1t+ C2

And so our general solution is:

y = vt = C1t
2 + C2t+ 4t2 ln(t)− 4t2

And we can simplify by combining the t2 terms to get:

y = C1t
2 + C2t+ 4t2 ln(t)

This method conveniently gives us both the complementary solution:

yc = C1t
2 + C2t

and the particular solution:
Y = 4t2 ln(t)
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