
Math 2930 Worksheet
2nd-order Homogeneous Equations

Week 5

February 22nd, 2019

2nd-order Homogeneous Equations with Constant Coefficients

• For equations of the form
ay′′(t) + by′(t) + cy(t) = 0

look for solutions of the form y = ert

• Find the roots r1 and r2 of the characteristic polynomial : ar2 + br + c = 0

• General solution is y(t) = c1e
r1t + c2e

r2t

Question 1. Solve the initial value problem

y′′ + y′ − 2y = 0, y(0) = 1, y′(0) = 1

Question 2. Can you find a differential equation whose general solution is

y = c1e
t + c2e

−4t ?



Question 3. Given an initial value problem

ay′′ + by′ + cy = 0, y(0) = y0, y′(0) = v0

Suppose that for some r1, r2, the general solution is:

y(t) = C1e
r1t + C2e

r2t

(a) In order to solve the initial value problem, C1 and C2 need to solve a system of two linear
equations. What is that system of equations?

(b) Given r1 6= r2, are you always guaranteed to be able to find C1 and C2 to solve the initial value
problem?

If so, will C1 and C2 be unique?
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Question 4. Consider the first-order differential equation

dy

ds
= iy, y(0) = 1

where i =
√
−1

(a) Show that y(s) = eis is a solution of this initial value problem

(b) Show that y(s) = cos(s) + i sin(s) is also a solution of this initial value problem.

(c) What does the uniqueness theorem imply about these two solutions?

3



(d) The answer to part c is known as Euler’s formula (Note: this is very different from Euler’s
method, despite the confusingly similar names!).

Can you also prove Euler’s formula using Taylor series? Recall that

f(x) = f(0) + f ′(0)x+
f ′′(0)

2
x2 +

f ′′′(0)

3!
x3 +

f ′′′′(0)

4!
x4 + ...

(e) Replacing s with βt, and then multiplying by eαt, we get

e(α+iβ)t = eαt
(
cos(βt) + i sin(βt)

)
Can you find a similar formula for e(α−iβ)t?
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(f) Suppose you have two functions

A(t) = eαt
(
cos(βt) + i sin(βt)

)
B(t) = eαt

(
cos(βt)− i sin(βt)

)
Simplify the two following expressions:

x1(t) =
A(t) +B(t)

2

x2(t) = i
A(t)−B(t)

2

(g) What do you notice about x1(t) and x2(t) compared to A(t) and B(t)?

(h) If A(t) and B(t) were solutions to a differential equation of the form

a
d2x

dt2
+ b

dx

dt
+ cx = 0

would x1(t) and x2(t) be solutions too? How about c1x1(t) + c2x2(t) for arbitrary constants c1 and
c2?
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Question 5. Find the general solution to the homogeneous differential equation

d2x

dt2
+ 25x = 0

You will find that your guess results in complex roots for the characteristic polynomial. Use your
results from Question 4 to find the general solution to the differential equation.

Question 6. Solve the initial value problem

9y′′ − 12y′ + 4y = 0, y(0) = 2, y′(0) = −1

6



Answer to Question 1. Plugging in y = ert, we get the characteristic polynomial

r+r − 2 = 0

This factors as
(r + 2)(r − 1) = 0

So we see that the two roots are r = 1 and r = −2. It follows that the general solution is:

y = c1e
t + c2e

−2t

The derivative of the general solution is:

y′ = c1e
t − 2c2e

−2t

Plugging in the initial condition, we get two equations:

y(0) = c1 + c2 = 1

y′(0) = c1 − 2c2 = 1

the solution to this system is c1 = 1 and c2 = 0. So plugging in those values of c1 and c2, we get
that the solution to the intial value problem is

y(t) = et

Answer to Question 2. Since our general solution is

y = c1e
t + c2e

−4t

We want to find an equation where the roots of the characteristic polynomial are r = 1 and r = −4.
One such polynomial is

(r − 1)(r + 4) = 0

r2 + 3r − 4 = 0

Which would come from the second-order equation

y′′ + 3y′ − 4y = 0

Answer to Question 3. (a)
Plugging in t = 0, we get that

y(0) = C1 + C2 = y0

If instead we differentiate y to get

y′(t) = r1C1e
r1t + r2C2e

r2t

then plug in t = 0, we get
r1C1 + r2C2 = v0
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So all together, our system of equations is

C1 + C2 = y0

r1C1 + r2C2 = v0

Or, written in matrix form: [
1 1
r1 r2

] [
C1

C2

]
=

[
y0
v0

]

(b) The above system of linear equations has a unique solution if and only if the determinant is
nonzero.
The determinant here is

(1)r2 − (1)r1 = r2 − r1
So given that r1 6= r2, our determinant is never zero, and therefore

There always exists a unique pair (C1, C2)

Answer to Question 4. (a) Plugging y = eis into both sides of the equation

dy

ds
= iy

d

ds

(
eis

)
= i

(
eis

)
ieis = ieis

So y = eis is a solution of the differential equation. It also satisfies the initial condition because
y(0) = e0 = 1. Therefore,

y(s) = eis is a solution

(b) Plugging y = cos(t) + i sin(t) into both sides of the equation,

dy

ds
= iy

d

ds

(
cos(s) + i sin(s)

)
= i

(
cos(s) + i sin(s)

)
− sin(s) + i cos(s) = i cos(s)− sin(s)

and since both sides are equal, that means y = cos(s) + i sin(s) is a solution. It also satisfies the
initial condition because

y(0) = cos(0) + i sin(0) = 1

Therefore,

y(s) = cos(s) + i sin(s) is a solution

(c)
dy

ds
= iy
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is a linear first-order differential equation. So by Theorem 2.4.2 in the book, we know that there
exists a unique solution to this differential equation for every initial condition.

Since we cannot have two distinct solutions to the initial value problem, it follows that our solutions
in parts (a) and (b) must be the same. In other words,

eis = cos(s) + i sin(s)

which is known as Euler’s formula.

(d) We can compute the following Taylor series expansions:

ex = 1 + x+
x2

2
+
x3

3!
+
x4

4!
+ . . .

cos(x) = 1− x2

2
+
x4

4!
− . . .

sin(x) = x− x3

3!
+
x5

5!
− . . .

Then plugging ix into the Taylor series for ex, we get

eix = 1 + ix+
(ix)2

2
+

(ix)3

3!
+

(ix)4

4!
+ . . .

eix = 1 + ix− x2

2
− ix

3

3!
+
x4

4!
+ . . .

Separating the real and imaginary terms,

eix =

(
1− x2

2
+
x4

4!
− . . .

)
+ i

(
x− x3

3!
+
x5

5!
− . . .

)
We can see that the real part is actually just the Taylor series expansion of cos(x), and the imaginary
component is actually the Taylor series expansion of sin(x). So this is another way of proving Euler’s
formula:

eix = cos(x) + i sin(x)

(e) First, we can write
e(α−iβ)t = eαte−iβt

Then using Euler’s formula on e−iβt,

e(α−iβ)t = eαt
(
cos(−βt) + i sin(−βt)

)
e(α−iβ)t = eαt

(
cos(βt)− i sin(βt)

)
(f) We can simplify the two expressions as follows:

x1(t) =
A(t) +B(t)

2

= eαt
(cos(βt) + cos(βt) + i sin(βt)− i sin(βt))

2

= eαt
2 cos(βt)

2
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x1(t) = eαt cos(βt)

x1(t) = i
A(t)−B(t)

2

= ieαt
(cos(βt)− cos(βt) + i sin(βt) + i sin(βt))

2

= ieαt
2i sin(βt)

2

x1(t) = −eαt sin(βt)

(g) x1(t) and x2(t) are real-valued, while A(t) and B(t) are real numbers.

(h) Since this is a homogeneous linear equation, we get that linear combinations of solutions are
also solutions. Therefore x1(t), x2(t), and c1x1(t) + c2x2(t) are all solutions.

Answer to Question 5. We have the homogeneous differential equation

x′′ + 25x = 0

Using our guess of x = ert, we find the characteristic polynomial to be

r2 + 25 = 0

which has roots
r = ±5i

Based on our answer to Question 4, but with α = 0, and β = 5, our general solution is:

x = c1 cos(5t) + c2 sin(5t)

Answer to Question 6. Our differential equation is

9y′′ − 12y′ + 4y = 0

Using our guess of y = ert, we find the characteristic polynomial to be

9r2 − 12r + 4 = 0

which factors as
(3r − 2)2 = 0

so therefore we have a repeated root of r = 2
3 .

Since this is a repeated root (see Section 3.4 of the book), our general solution is

y = c1e
2t/3 + c2te

2t/3

And our derivative is

y′ =
2c1
3
e2t/3 + c2e

2t/3 +
2c2t

3
e2t/3
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Plugging in t = 0, we get that

y(0) = c1 = 2

y′(0) =
2

3
c1 + c2 = −1

Plugging c1 = 2 into the second equation,

4

3
+ c2 = −1

which we can solve to get c2 = −7
3 . Therefore the solution to the initial value problem is

y(t) = 2e2t/3 − 7t

3
e2t/3
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