
Math 2930 Worksheet
Exact Equations and Euler’s Method

Week 4

February 15, 2019

Learning Goals

• Determine when first-order ODEs are exact.

• Solve first-order exact equations.

• Use integrating factors to make equations exact.

• Analyze the convergence of Euler’s method for simple examples.

Questions

Question 1. (a) Find the value(s) of b for which the given equation is exact:

(xy2 + bx2y) + (x+ y)x2y′ = 0

(b) Solve it for the value of b you found in part (a) .



Question 2. (a) Show that the equation below is not exact:

x2y3 + x(1 + y2)y′ = 0

(b) Show that it can be made exact by multiplying both sides of the equation by the integrating
factor µ(x, y) = 1

xy3
.

(c) Now that the equation is exact, solve it.
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Question 3. Consider the equation

dy

dt
= y

y(0) = 1

(a) Find the analytical solution for y(t) with the given initial condition

(b) If instead we solve the equation using the forward Euler’s method, with a step size of h, write
down the first 2 iterations. Express your answers in terms of h.

(c) Based on (b) , write down the expression after the n-th iteration.

(d) Let n be the number of steps over the interval [0, t], with n = t/h, show that in the limit as
h → 0, and n → ∞, the numerical answer given by Euler’s method converges to the analytical
solution that you found in part (a) .
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Question 4. (a) Show that the equation below is not exact:

y + (2xy − e−2y)y′ = 0

(b) It turns out that we can make this equation exact by using some sort of integrating factor µ
(like we did in question 2). In order to find µ, we’ll have to assume that it depends on either x
only or on y only, but not both.

Let’s assume for now that µ is a function of y only. What differential equation will µ(y) have to
solve in order for our equation to be exact?

(c) What if we tried to look for µ as a function of x only instead. Would this approach work? Why
or why not?
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(d) Solve the differential equation you found in part (b) for µ(y).

(e) Solve the original equation in part (a) using the integrating factor µ you found in part (d) .
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(f) Can you extend your argument from part (b) to more general equations?

M(x, y) +N(x, y)
dy

dx
= 0

i.e. what are the conditions on M and N such that an integrating factor µ = µ(x) can be used to
make the equation exact? When can an integrating factor µ = µ(y) be used?
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Answer to Question 1.
(a) This equation is exact when:

My = Nx

So for this problem, that becomes:

∂

∂y

[
xy2 + bx2y

]
=

∂

∂x

[
(x+ y)x2

]
Simplifying and solving for b,

2xy + bx2 = 3x2 + 2xy

bx2 = 3x2

b = 3

Therefore b = 3 is the only value of b for which the given equation is exact.

(b) For b = 3, we now want to find a function ψ(x, y) such that:

∂ψ

∂x
= M(x, y) = xy2 + 3x2y

and
∂ψ

∂y
= N(x, y) = x3 + x2y

Integrating the first equation with respect to x (while holding y constant), we get:

ψ(x, y) =
x2y2

2
+ x3y + f(y)

for some function f(y).
Differentiating with respect to y and setting it equal to N , we have

∂ψ

∂y
x2y + x3 + f ′(y) = N(x, y) = x3 + x2y

So clearly f ′(y) = 0, which means that f(y) is a constant.
Therefore the general solution is:

ψ(x, y) =
x2y2

2
+ x3y = C
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Answer to Question 2. (a) For this equation:

M(x, y) = x2y3, N(x, y) = x(1 + y2)

To check if it’s exact, we calculate
∂M

∂y
= 3x2y2

and
∂N

∂x
= 1 + y2

My 6= Nx, so this equation is not exact.

(b) Multiplying everything by the integrating factor µ(x, y) = 1
xy3

,

M(x, y) = x

∂M

∂y
= 0

and

N(x, y) =
1

y3
+

1

y

∂N

∂x
= 0

Since My = Nx, the equation

x+

(
1

y3
+

1

y

)
y′ = 0, is exact.

(in fact it is also separable).

(c) We want to find a function ψ(x, y) with partial derivatives:

∂ψ

∂x
= x,

∂ψ

∂y
=

1

y3
+

1

y

Integrating the first of those, we get

ψ(x, y) =
1

2
x2 + f(y)

for some function f(y). Integrating the second equation,

ψ(x, y) =
−1

2y2
+ ln(y) + g(x)

Combining these two, we find that the solution is:

ψ(x, y) =
1

2
x2 +

−1

2y2
+ ln(y) = C
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Answer to Question 3.
(a) We have the equation

dy

dt
= y

This is separable, so we solve it as follows:∫
dy

y
=

∫
dt

ln(y) = t+ C

y = Cet

plugging in the initial condition y(0) = 1, we get that C = 1, resulting in an analytical solution of

y(t) = et

(b) With Euler’s method, we start with the initial condition:

y0 = 1

The first step gives
y1 = y0 + hf(y0) = y0 + hy0 = (1 + h)y0 = 1 + h

then the second step gives

y2 = y1 + hf(y1) = y1 + h(y1) = (1 + h)y1 = (1 + h)(1 + h) = (1 + h)2

(c) From (b) we see that there is a pattern that

yn+1 = (1 + h)yn

resulting in the formula:

yn = (1 + h)n

(d) Taking our answer from (c) and replacing n with t/h, we have

yn = (1 + h)t/h

Then we are interested in taking the limit as h→ 0

lim
h→0

yn = lim
h→0

(1 + h)t/h

To figure out this limit, it helps to take the logarithm of both sides,

lim
h→0

ln(yn) = lim
h→0

ln
[
(1 + h)t/h

]
= lim

h→0

t ln(1 + h)

h

this can then be evaluated using L’hôpital’s rule,

lim
h→0

ln(yn) = lim
h→0

t 1
1+h

1
= t

Then since
lim
h→0

ln(yn) = t

we have
lim
h→0

yn = et

matching our solution from part (a) .
Note: you can also do this problem by taking the limit as n→∞ instead of h→ 0 in a very similar
way, but the details are a little trickier.
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Answer to Question 4. (a) For this equation,

M(x, y) = y, N(x, y) = 2xy − e−2y

To check if it is exact, we compute
∂M

∂y
= 1

and
∂N

∂x
= 2y

My 6= Nx, so this equation is not exact.

(b) So we want to come up with an integrating factor µ so that if we multiply the entire equation
by µ, then our equation is now exact.

Let’s try an integrating factor of the form µ = µ(y). Our equation becomes

yµ(y) + µ(y)
(
2xy − e−2y

) dy
dx

= 0

Now we check the condition for exactness:

∂M

∂y
= yµ′(y) + µ(y)

∂N

∂x
= µ(y)2y

So this equation is exact if:
yµ′(y) + µ(y) = µ(y)2y

After rearranging,

µ′(y) +

(
1

y
− 2

)
µ(y) = 0

Which we see is a first-order linear ODE in y. So if µ(y) is a solution of this ODE, it is an integrating
factor for the original equation.

(c) Now, let’s assume that µ = µ(x).
Our equation becomes

yµ(x) + µ(x)
(
2xy − e−2y

) dy
dx

= 0

Now we check the condition for exactness:

∂M

∂y
= µ(x)

∂N

∂x
= µ′(x)

(
2xy − e−2y

)
+ µ(x)2y

So this equation is exact if:

µ(x) = µ′(x)
(
2xy − e−2y

)
+ µ(x)2y

10



Since this expression depends on both x and y, there is not a function µ(x) that will satisfy this
equation.

(d) This linear ODE can be solved as usual, using (another) integrating factor. This means we
want to multiply both sides by some function η so that the left hand side looks like a product rule.

ηµ′(y) + η

(
1

y
− 2

)
µ(y) = 0

In order for this to be a product rule, we would need

dη

dy
= η

(
1

y
− 2

)
This can be separated: ∫

dη

η
=

∫ (
1

y
− 2

)
dy

Solving for η,
ln(η) = ln(y)− 2y + C

η = Cye−2y

Since the constant doesn’t matter for an integrating factor, we’ll just take C = 1. So plugging this
back in, the ODE for µ(y) becomes:

ye−2yµ′(y) +
(
e−2y − 2ye−2y

)
µ(y) = 0

The left hand side is now in the form of a product rule:(
ye−2yµ(y)

)′
= 0

Integrating both sides,
ye−2yµ(y) = C

Again, since µ is an integrating factor, the choice of constant C does not matter, so we will take
C = 1 for simplicity. Then we find the integrating factor is:

µ(y) =
e2y

y

(e) Multiplying both sides of the original equation by the integrating factor µ(y) = e2y

y ,

e2y +

(
2xe2y − 1

y

)
dy

dx
= 0

We can check that the equation is now exact:

∂M

∂y
= 2e2y

∂N

∂x
= 2e2y
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So we want to look for a solution of the form ψ(x, y) = C. ψ must have partial derivatives:

∂ψ

∂x
= M(x, y) = e2y

∂ψ

∂y
= N(x, y) = 2xe2y − 1

y

Integrating the first equation with respect to x,

ψ(x, y) = xe2y + f(y)

for some function f(y).
Integrating the second equation with respect to y,

ψ(x, y) = xe2y − ln(y) + g(x)

for some function g(y).
Putting these two together, we see that the final solution is

ψ(x, y) = xe2y − ln(y) = C

(f) In general, if we multiply by an integrating factor µ(x), we have

µ(x)M(x, y) + µ(x)N(x, y)
dy

dx
= 0

This equation is exact if:
∂

∂y

[
µ(x)M(x, y)

]
=

∂

∂x

[
µ(x)N(x, y)

]
µ(x)My = µ′(x)N + µ(x)Nx

Rearranging,

µ′(x) =

(
My −Nx

N

)
µ(x)

In general, the
My−Nx

N term can depend on both x and y. In order to be able to solve for µ as a
function of x, we then need for this term to depend only on x. In other words, an integrating factor
of the form µ(x) can be found if:

My −Nx

N
is a function of x only

We can repeat the same process with µ(y) instead of µ(x). Our equation becomes:

µ(y)M(x, y) + µ(y)N(x, y)
dy

dx
= 0

Checking for exactness,
∂

∂y

[
µ(y)M(x, y)

]
=

∂

∂x

[
µ(y)N(x, y)

]
µ(y)My + µ′(y)M = µ(y)Nx
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Rearranging,

µ′(y) =

(
Nx −My

M

)
µ(y)

So an integrating factor of the form µ(y) can be used if and only if:

Nx −My

M
is a function of y only
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