
Math 2930 Worksheet
Final Exam Review

Week 14

May 3rd, 2019

Question 1. Solve the initial value problem

y′ − y = 2xex, y(0) = 1

Question 2. Find the general solution of the differential equation(y
x

+ 6x
)

+
(
ln(x)− 2

)dy
dx

= 0



Question 3. Find the general solution of the differential equation

dy

dx
=

1

x− y

Question 4. Consider the differential equation: y′ = y − y3.

(a) Find the equilibrium solutions and determine which of these solutions are asymptotically stable,
semistable, and unstable.

(b) Draw the phase line and sketch several solution curves in the ty-plane for t > 0.

(c) Assuming that the solution y(t) has the initial value y(0) = −1
2 , compute the limit of y(t) as

t→ +∞.
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Question 5. Find the general solution of the differential equation

y′′ − ty′ + y = 0

given that one solution is y1 = t.

(It’s OK to leave part of your answer in the form of an integral.)
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Question 6. Find the general solution to the following ODE:

d4y

dt4
+ 4

d2y

dt2
= t2

4



Question 7. A thin wire coinciding with the interval [−L,L] is bent into the shape of the circle
so that the ends x = −L and x = L are joined. Under certain conditions, the temperature u(x, t)
in the wire satisfies the boundary-value problem:

ut = α2uxx, −L < x < L, t > 0

u(−L, t) = u(L, t), t > 0

ux(−L, t) = ux(L, t), t > 0

u(x, 0) = f(x), −L < x < L

Find the solution to this problem using the method of separation of variables.
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Question 8. The Neumann problem for the Laplace equation in the interior of the circle r = a is
given by

urr +
1

r
ur +

1

r2
uθθ = 0, 0 ≤ r < a, 0 ≤ θ < 2π

ur(a, θ) = f(θ), 0 ≤ θ < 2π

(a) Using the method of separation of variables, find the solution to this problem.

(b) What condition should one impose on the function f(θ) for this problem to be solvable?
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Answer to Question 1. This is a first-order linear equation, so we can solve it using integrating
factors. (You could also use something like method of undetermined coefficients, but this would be
harder).
We have the equation

y′ − y = 2xex

Multiplying both sides by e
∫
−1dx = e−x,

e−xy′ − e−xy = 2x

and then using the product rule, (
e−xy

)′
= 2x

Integrating both sides and then solving for y,∫ (
e−xy

)′
dx =

∫
2xdx

e−xy = x2 + C

y = x2ex + Cex

Now we plug in the initial condition to find C:

y(0) = 02(1) + C(1) = 1

C = 1

so the final answer is:
y = x2ex + ex

Answer to Question 2. We are given the equation(y
x

+ 6x
)

+

(
ln(x)− 2

)
dy

dx
= 0

We can check this equation for exactness. Since

M(x, y) =
y

x
+ 6x, N(x, y) = ln(x)− 2

We compute that

∂M

∂y
=

∂

∂y

[y
x

+ 6x
]

=
1

x

∂N

∂x
=

∂

∂x

[
ln(x)− 2

]
=

1

x

Since My = Nx, this equation is exact.
Now, for the solution we want to find a function Φ(x, y) such that

∂Φ

∂x
= M(x, y) =

y

x
+ 6x

∂Φ

∂y
= N(x, y) = ln(x)− 2
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Integrating the first equation with respect to x and the second equation with respect to y, we get

Φ(x, y) =

∫ (y
x

+ 6x
)
dx = y ln(x) + 3x2 + g(y)

Φ(x, y) =

∫
(ln(x)− 2) dy = y ln(x)− 2y + f(x)

(Remember that because we are ”undoing” partial derivatives, we get +f(x) or +g(y) instead of
+C.) Combining those two equations for Φ, we see that

Φ(x, y) = y ln(x) + 3x2 − 2y

So our final answer is
y ln(x) + 3x2 − 2y = C

Answer to Question 3. We want to find the general solution of the following differential equation:

dy

dx
=

1

x− y

Method 1: “Flip” the variables
If we “flip” both sides of the equation by taking the reciprocal, we get the equation:

dx

dy
= x− y

The clever part of this method is realizing that this is actually a first-order linear ODE for finding
x as a function of y. Rearranging things into standard form:

dx

dy
− x = −y

Since it’s a first order linear ODE, we can solve it using an integrating factor of:

µ(y) = e
∫
−1dy = e−y

Multiplying the entire equation by this integrating factor, we get

e−y
dx

dy
− e−yx = −ye−y

The left hand side is an expression that comes from a product rule, so this can be written(
e−yx

)′
= −ye−y

Integrating both sides (this requires integration by parts for the right hand side),

e−yx =

∫
−ye−ydy = (y + 1)e−y + C

Then multiplying both sides by ey to solve for x as a function of y, we get the general solution:

x = y + 1 + Cey

Method 2: Integrating factor to make exact
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We can start with the original equation:

dy

dx
=

1

x− y
We can rearrange it into something that looks like an exact equation:

(x− y)
dy

dx
= 1

−1 + (x− y)
dy

dx
= 0

Unfortunately, when we check if this is exact, we get:

M = −1 N = x− y
My = 0 Nx = 1

So we see that My 6= Nx, so this equation is not exact as written. Since

Nx −My

M
=

0− 1

−1
= 1

is a function of y (and more importantly, not a function of x), we can find an integrating factor of
the form µ = µ(y).
If we multiply both sides of the equation by µ(y), we get

−µ+ µ · (x− y)
dy

dx
= 0

So in order for this to be exact, we would need

M = −µ(y) N = (x− y)µ(y)

My = −dµ
dy

Nx = µ(y)

−dµ
dy

= µ(y)

dµ

dy
= −µ(y)

This last line is a separable equation for µ(y). Which has a solution of:

µ(y) = e−y

So this means that if we multiply our original equation by e−y, yielding:

−e−y + (x− y)e−y
dy

dx
= 0

which is now an exact equation. That means we want to find a function Φ(x, y) with the following
partial derivatives:

∂Φ

∂x
= −e−y ∂Φ

∂y
= (x− y)e−y

Φ =

∫
−e−ydx Φ =

∫
(x− y)e−ydy

Φ = −xe−y + f(y) Φ = −xe−y −
∫
ye−ydy

Φ = −xe−y + f(y) Φ = −xe−y + (y + 1)e−y + g(x)
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So in order for Φ(x, y) to match both of these, we must have f(y) = (y+ 1)e−y and g(x) = 0. This
yields a general solution of:

Φ(x, y) = −xe−y + (y + 1)e−y = C

This can be algebraically rearranged to be in the format of the other answers:

x = y + 1 + Cey

Method 3: Substitution
Starting with

dy

dx
=

1

x− y
use the substitution:

v = x− y
dv

dx
= 1− dy

dx
dy

dx
= 1− dv

dx

Turning the original equation into

1− dv

dx
=

1

v

This equation is separable:

dv

dx
=
−1

v
+ 1 =

v − 1

v∫
v

v − 1
dv =

∫
dx∫

1 +
1

v − 1
dv = x+ C

v + ln(v − 1) = x+ C

x− y + ln(x− y − 1) = x+ C

ln(x− y − 1) = y + C

x− y − 1 = Cey

x = y + 1 + Cey
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Answer to Question 4.
(a) Since this is an autonomous equation, we’ll first look at the graph of dy

dt (vertical axis) vs y
(horizontal axis):

The equilibria occur where this graph crosses the horizontal axis, these are the values of y where
dy
dt = 0. Solving for them,

dy

dt
= y − y3 = 0

y(1− y2) = y(1− y)(1 + y) = 0

y = 0, 1, −1

To figure out whether these equilibrium solutions are stable, unstable, or semistable, we will look
at the sign of dy

dt nearby.

For y = −1, we see that for values of y less than -1, dy
dt if positive, so solutions are increasing.

For values of y slightly greater than −1, we see dy
dt is negative, so solutions are decreasing. Since

solutions below y = −1 are increasing and solutions above are decreasing, we get that

y = −1 is a stable equilibrium

For y = 0, solutions slightly below are decreasing and solutions slightly above are increasing, so

y = 0 is an unstable equilibrium

For y = 1, solutions slightly below are increasing and solutions slightly above are decreasing, so

y = 1 is a stable equilibrium
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(b)
The phase line looks like:

y
-1 0 1

and the solutions look like:

Here the equilibria are in blue, and solutions are in red and black.

(c) If the initial condition is y(0) = −1
2 , then the solution y(t) will approach the nearest stable

equilibrium at y = −1.
This specific solution y(t) is the one graphed in black above.

Answer to Question 5. We want to find the general solution of

y′′ − ty′ + y = 0

given that y1 = t is a solution.

This is a reduction of order problem, which means that we will look for a general solution of the
form

y(t) = y1(t)v(t) = tv(t)

Taking derivatives,

y = tv

y′ = v + tv′

y′′ = 2v′ + tv′′
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Plugging this back into the original equation,

y′′ − ty′ + y = 0

tv′′ + 2v′ − t
(
v + tv′

)
+ tv = 0

tv′′ + (2− t2)v′ = 0

v′′

v′
= t− 2

t

If we define a new variable u = v′, then we have

1

u

du

dt
= t− 2

t

Multiplying both sides by t and integrating,∫
1

u
du =

∫ (
t− 2

t

)
dt

ln(u) =
t2

2
− 2 ln(t) + C1

Exponentiating both sides, and replacing u with v′,

u = v′ =
C1e

t2

t2

Integrating,

v = C1

∫
et

2

t2
dt+ C2

And multiplying both sides by t,

y = tv = C1t

∫
et

2

t2
dt+ C2t

Answer to Question 6. First, we want to find the solution yc of the homogeneous equation:

y(4) + 4y′′ = 0

We do this by solving for the roots of the characteristic equation,

y(4) + 4y′′ = 0

r4 + 4r2 = 0

r2(r2 + 4) = 0

r = 0, 0, ±2i

So the complementary solution is

yc(t) = c1 + c2t+ c3 cos(2t) + c4 sin(2t)

Now for the particular solution Y . Based on the method of undetermined coefficients, our guess
for the particular solution will be

Y =
(
A+Bt+ Ct2

)
t2
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where the A + Bt + Ct2 term is based on the right hand side of the original equation, and the t2

term shows up because we have a double root of r = 0 in the characteristic equation. Multiplying
this out and taking derivatives,

Y = At2 +Bt3 + Ct4

Y ′ = 2At+ 3Bt2 + 4Ct3

Y ′′ = 2A+ 6Bt+ 12Ct2

Y ′′′ = 6B + 24Ct

Y (4) = 24C

Plugging this back into the original equation,

Y (4) + 4Y ′′ = t2

24C + 4(2A+ 6Bt+ 12Ct2) = t2

48Ct2 + 24Bt+ (8A+ 24C) = t2

Comparing like terms, we get a system of three equations for A, B, and C:

48C = 1

24B = 0

8A+ 24C = 0

The solution to this system of equations is:

A =
−1

16
, B = 0, C =

1

48

so the particular solution is

Y (t) = − t
2

16
+
t4

48

Then the general solution is the combination of the complementary and particular solutions:

y = yc + Y = c1 + c2t+ c3 cos(2t) + c4 sin(2t)− t2

16
+
t4

48

Answer to Question 7.
Let u(x, t) = X(x)T (t). Then ut = XT ′, uxx = X ′′T .
Plugging them into the PDE, we get

XT ′ = α2X ′′T

Dividing both sides by α2XT ,
T ′

α2T
=
X ′′

X

Since the left hand side depends on t only, and the right hand side depends on x only, both sides
must be equal to the same constant, which I will call −λ:

T ′

α2T
=
X ′′

X
= −λ
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From this, we get two ODEs, which are:

T ′ + α2λT = 0

X ′′ + λX = 0

Also, from the first boundary condition:

u(−L, t) = u(L, t)

X(−L) = X(L)

and from the second boundary condition:

ux(−L, t) = ux(L, t)

X ′(−L) = X ′(L)

Thus we get the eigenvalue problem:

X ′′ + λX = 0

X(−L) = X(L), X ′(−L) = X ′(L)

Case 1: λ < 0
Let λ = −µ2, where µ > 0. Then our general solution is

X(x) = c1 cosh(µx) + c2 sinh(µx)

and its derivative is
X ′(x) = µc1 sinh(µx) + µc2 cosh(µx)

Plugging in the first boundary condition X(L) = X(−L),

X(L) = X(−L)

c1 cosh(µL) + c2 sinh(µL) = c1 cosh(−µL) + c2 sinh(−µL)

Since sinh() is an odd function and cosh() is an even function, we can rearrange this as follows:

c1 cosh(µL) + c2 sinh(µL) = c1 cosh(µL)− c2 sinh(µL)

2c2 sinh(µL) = 0

We note that sinh(µL) = 0 if and only if µL = 0, which is not the case since we have defined µ to
be positive. This means c2 = 0. Plugging in the second boundary condition X ′(L) = X ′(−L),

X ′(L) = X ′(−L)

µc1 sinh(µL) + µc2 cosh(µL) = µc1 sinh(−µL) + µc2 cosh(−µL)

which similarly simplifies as:

µc1 sinh(µL) + µc2 cosh(µL) = −µc1 sinh(µL) + µc2 cosh(µL)

2c1 sinh(µL) = 0

which by the same reasoning as before requires that c1 = 0. Therefore we have both c1 = c2 = 0,
so we only get the trivial solution.
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Case 2: λ = 0
For this case we have X ′′ = 0, so the general solution is:

X(x) = c1 + c2x

Plugging in the first boundary condition,

X(L) = X(−L)

c1 + c2L = c1 − c2L
2c2L = 0

So c2 = 0. For this case, the second boundary condition is actually always satisfied:

X ′(L) = X ′(−L)

c2 = c2

But this places no restrictions on c1, which can be arbitrary.
Thus we have an eigenvalue of λ = 0, with eigenfunction X0(x) = 1.
For this value of λ, we also get that T ′ = 0, so T0(t) is also an arbitrary constant.

Case 3: λ > 0
For this case, the general solution is:

X(x) = c1 cos(
√
λx) + c2 sin(

√
λx)

Taking its derivative,
X ′(x) = −c1

√
λ sin(

√
λx) + c2

√
λ cos(

√
λx)

Plugging in the first boundary condition,

X(L) = X(−L)

c1 cos(
√
λL) + c2 sin(

√
λL) = c1 cos(−

√
λL) + c2 sin(−

√
λL)

c1 cos(
√
λL) + c2 sin(

√
λL) = c1 cos(

√
λL)− c2 sin(

√
λL)

2c2 sin(
√
λL) = 0

And plugging in the second boundary condition,

X ′(L) = X ′(−L)

−c1
√
λ sin(

√
λL) + c2

√
λ cos(

√
λL) = −c1

√
λ sin(−

√
λL) + c2

√
λ cos(−

√
λL)

−c1
√
λ sin(

√
λL) + c2

√
λ cos(

√
λL) = c1

√
λ sin(

√
λL) + c2

√
λ cos(

√
λL)

2c1
√
λ sin(

√
λL) = 0

Combining both of these conditions, the only we can get a nontrivial solution is if:

sin(
√
λL) = 0
√
λL = nπ, n = 1, 2, 3, . . .

λ =
(nπ
L

)2
, n = 1, 2, 3, . . .
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So these are our eigenvalues λ. In this case, both c1 and c2 are arbitrary, so the corresponding
eigenfunctions are:

Xn(x) = c1 cos
(nπ
L
x
)

+ c2 sin
(nπ
L
x
)

For these eigenvalues, the ODE for T (t) becomes:

T ′ + α2
(nπ
L

)2
T = 0

T ′ = −
(αnπ
L

)2
T

the solution to which is:
Tn(t) = e−(αnπL )

2
t

Relabelling the constants for convenience, our fundamental solutions are:

u0(x, t) = X0(x)T0(t) =
a0
2

and
un(x, t) = Xn(x)Tn(t) = e−(αnπL )

2
t
(
an cos

(nπ
L
x
)

+ bn sin
(nπ
L
x
))

and the general solution is a linear combination of the fundamental solutions:

u(x, t) =
a0
2

+
∞∑
n=1

e−(αnπL )
2
t
(
an cos

(nπ
L
x
)

+ bn sin
(nπ
L
x
))

Now for the initial conditions. Plugging in t = 0,

f(x) = u(x, 0)

f(x) =
a0
2

+

∞∑
n=1

an cos
(nπ
L
x
)

+ bn sin
(nπ
L
x
)

from which we see that the coefficients an and bn should be the coefficients of the Fourier series
expansion of f(x) on the interval [−L,L]. Therefore the complete answer is:

u(x, t) =
a0
2

+

∞∑
n=1

e−(αnπL )
2
t
(
an cos

(nπ
L
x
)

+ bn sin
(nπ
L
x
))

where

an =
1

L

∫ L

−L
f(x) cos

(nπ
L
x
)
dx

bn =
1

L

∫ L

−L
f(x) sin

(nπ
L
x
)
dx
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Answer to Question 8. (a) For the method of separation of variables, we look for solutions of
the form:

u(rθ) = R(r)Θ(θ)

Plugging this into Laplace’s equation in polar coordinates,

R′′

R
+

1

r

R′

R
+

1

r2
Θ′′

Θ
= 0

Separating variables,
r2R′′

R
+
rR′

R
= −Θ′′

Θ

Since the left hand side depends only on r, and the right hand side only on θ, they both must be
equal to the same constant λ:

r2R′′

R
+
rR′

R
= −Θ′′

Θ
= λ

We can use this to get the following ODEs for R(r) and Θ(θ):

Θ′′ + λΘ = 0

r2R′′ + rR′ − λR = 0

In order for our solution to be well-defined in polar coordinates, we want to make sure that our
solution is the same when we increase θ by 2π, as this is just traveling around a circle back to the
same point. This means that u(r, θ) should be periodic in θ with period 2π.
More precisely, we need that for all angles θ:

u(r, θ) = u(r, θ + 2π)

R(r)Θ(θ) = R(r)Θ(θ + 2π)

Θ(θ) = Θ(θ + 2π)

This will serve in the role of boundary conditions for our ODE for Θ(θ). In other words, we are
looking for non-trivial solutions to:

Θ′′ + λΘ = 0, Θ(θ) = Θ(θ + 2π)

For λ < 0, our solutions for Θ are of the form:

Θ(θ) = c1e
√
λθ + c2e

−
√
λθ

In order for this to be periodic,

Θ(θ) = Θ(θ + 2π)

c1e
√
λθ + c2e

−
√
λθ = c1e

√
λ(θ+2π) + c2e

−
√
λ(θ+2π)

c1e
√
λθ + c2e

−
√
λθ = c1e

√
λθe2π

√
λ + c2e

−
√
λθe−2π

√
λ

and matching like terms, we would need that:

c1 = c1e
2π
√
λ and c2 = c2e

−2π
√
λ

This only happens when c1 = c2 = 0, which is the trivial solution.
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For λ = 0, our solutions for Θ are of the form:

Θ(θ) = c1 + c2θ

In order for this to be periodic,

Θ(θ) = Θ(θ + 2π)

c1 + c2θ = c1 + c2(θ + 2π)

c1 + c2θ = c1 + c2(2π) + c2θ

0 = c2(2π)

c2 = 0

So c2 = 0, but c1 could be any constant. This means that Θ0(θ) = c1 works for any constant c1.
When λ = 0, the equation for R is:

r2R′′ + rR′ = 0

This is an Euler equation, so looking for solutions of the form R = rm,

m(m− 1) +m = 0

m2 = 0

So we have a repeated root at m = 0. This corresponds to a solution of:

R0(r) = c1 + c2 ln(r)

Since the natural logarithm is not defined at the origin r = 0, if we want our solution u to be
defined at r = 0, we need to set c2 = 0, leaving:

R0(r) = c1

So for λ = 0, we have that R can also be any constant. Thus we have an eigenvalue-eigenfunction
pair of:

λ = 0, u0(r, θ) =
c0
2

where c0 could be any constant (I’m writing it this way since it will end up being useful later).
For λ > 0, our solutions for Θ are of the form:

Θ(θ) = A cos
(√

λθ
)

+B sin
(√

λθ
)

In order for this to be periodic,

Θ(θ) = Θ(θ + 2π)

A cos
(√

λθ
)

+B sin
(√

λθ
)

= A cos
(√

λ(θ + 2π)
)

+B sin
(√

λ(θ + 2π)
)

Using the angle addition trig identities, the right hand side becomes:

= A
[
cos
(√

λθ
)

cos
(

2π
√
λ
)
− sin

(√
λθ
)

sin
(

2π
√
λ
)]

+B
[
sin
(√

λθ
)

cos
(

2π
√
λ
)

+ sin
(

2π
√
λ
)

cos
(√

λθ
)]

Grouping together the terms by θ,

=
[
A cos

(
2π
√
λ
)

+B sin
(

2π
√
λ
)]

cos
(√

λθ
)

+
[
B cos

(
2π
√
λ
)
−A sin

(
2π
√
λ
)]

sin
(√

λθ
)
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Comparing like terms, A and B should satisfy the equations:

A = A cos
(

2π
√
λ
)

+B sin
(

2π
√
λ
)

B = B cos
(

2π
√
λ
)
−A sin

(
2π
√
λ
)

This is always true for A = B = 0, but this corresponds to the trivial solution. However, for values
of λ where the cosine term above is 1 and the sine term is 0, this would be true for any A and B.
More precisely, we want the values of λ where:

cos
(

2π
√
λ
)

= 1 =⇒ 2π
√
λ = 2πn, n = 1, 2, 3...

sin
(

2π
√
λ
)

= 0 =⇒ 2π
√
λ = πn, n = 1, 2, 3...

Since we want both to be true, we take the more restrictive condition that:

2π
√
λ = 2πn, n = 1, 2, 3...
√
λ = n, n = 1, 2, 3...

λ = n2, n = 1, 2, 3...

So these are our eigenvalues, and they have corresponding eigenfunctions:

Θn(θ) = A cos (nθ) +B sin (nθ) , n = 1, 2, 3...

Now we want to solve for R(r) at these eigenvalues
(
λ = n2

)
. We get an Euler equation:

r2R′′ + rR′ − n2R = 0

Looking for solutions of the form R = rm, we plug this in and solve for m:

m(m− 1) +m− n2 = 0

m2 − n2 = 0

m2 = n2

m = ±n

So R(r) looks like:
Rn(r) = Arn +Br−n

However, because we want R to be defined at r = 0, we then take B = 0, leaving:

Rn(r) = Arn

Putting this all together (and renaming some constants), our general solution is of the form:

u(r, θ) =

∞∑
n=0

Rn(r)Θn(θ)

u(r, θ) =
c0
2

+

∞∑
n=1

rn
[
An cos(nθ) +Bn sin(nθ)

]
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Now we still have to apply the Neumann boundary conditions. Taking the partial derivative with
respect to r,

ur(r, θ) =
∞∑
n=1

nrn−1
[
An cos(nθ) +Bn sin(nθ)

]
Plugging in r = a, and setting it equal to f(θ)

ur(a, θ) =
∞∑
n=1

nan−1
[
An cos(nθ) +Bn sin(nθ)

]
= f(θ), 0 ≤ θ < 2π

This means that we want ur(a, θ) to match the Fourier series for f(θ) on the interval [0, 2π]. Using
the formula for Fourier series coefficients, we get the following equations for An and Bn:

nan−1An =
1

π

∫ 2π

0
f(θ) cos(nθ)dθ

nan−1Bn =
1

π

∫ 2π

0
f(θ) sin(nθ)dθ

So our solution to the problem is:

u(r, θ) =
c0
2

+
∞∑
n=1

rn
[
An cos(nθ) +Bn sin(nθ)

]
where the coefficients are given by:

An =
1

nan−1π

∫ 2π

0
f(θ) cos(nθ)dθ

Bn =
1

nan−1π

∫ 2π

0
f(θ) sin(nθ)dθ

c0 = any constant

(b) In our solution to part (a) , when we were enforcing the boundary conditions on ur, we got to
an equation of the form:

ur(a, θ) =
∞∑
n=1

nan−1
[
An cos(nθ) +Bn sin(nθ)

]
= f(θ), 0 ≤ θ < 2π

and then went on to take a Fourier series expansion of f(θ). However, Fourier series usually have
a constant term c0

2 . While our formula for u(r, θ) had this, when we took the derivative, this then
makes sure that ur(r, θ) does not have a constant term.
So for this problem to be solvable, we would need the c0

2 constant term of the Fourier series for
f(θ) to be zero. Rephrasing this in terms of a condition on f ,

1

π

∫ 2π

0
f(θ)dθ = 0
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