Math 2930 Worksheet Week 14
Final Exam Review May 3rd, 2019

Question 1. Solve the initial value problem

y —y=2ze",  y(0)=1

Question 2. Find the general solution of the differential equation

(£ +62) + (n(2) - 2)% -0



Question 3. Find the general solution of the differential equation

dy 1
de  z—vy

Question 4. Consider the differential equation: ' = y — y3.

(a) Find the equilibrium solutions and determine which of these solutions are asymptotically stable,
semistable, and unstable.

(b) Draw the phase line and sketch several solution curves in the ty-plane for ¢ > 0.

(c) Assuming that the solution y(t) has the initial value y(0) = —1, compute the limit of y(t) as
t — 4o00.



Question 5. Find the general solution of the differential equation
y'—ty' +y=0
given that one solution is y; = t.

(It’s OK to leave part of your answer in the form of an integral.)



Question 6. Find the general solution to the following ODE:

d4y d2y

42
at T T



Question 7. A thin wire coinciding with the interval [—L, L] is bent into the shape of the circle
so that the ends x = —L and = = L are joined. Under certain conditions, the temperature u(z,t)
in the wire satisfies the boundary-value problem:

ut:a2um, —L<x<L,t>0
u(—L,t) = u(L,t), t>0
uzp(—L,t) = uz (L, 1), t>0
u(z,0) = f(x), —-L<z<L

Find the solution to this problem using the method of separation of variables.



Question 8. The Neumann problem for the Laplace equation in the interior of the circle r = a is
given by

1 1

Upr + —Up + —ugp = 0, 0<r<a, 0<6<2r
r r

ur(aag):f(0)> 0<6<2r

(a) Using the method of separation of variables, find the solution to this problem.

(b) What condition should one impose on the function f(#) for this problem to be solvable?



Answer to Question 1. This is a first-order linear equation, so we can solve it using integrating
factors. (You could also use something like method of undetermined coefficients, but this would be
harder).
We have the equation

y —y = 2xe”

Multiplying both sides by el ~ldr — o~z
ey —e Ty =2

and then using the product rule,
(e*xy)/ =2

Integrating both sides and then solving for g,

/(exy)/dx: /Qxda:

e ty=a’>+C
y =z + Ce”

Now we plug in the initial condition to find C"

y(0) = 0%(1) +C(1) =1
C=1

so the final answer is:

y:$26$—|—6z

Answer to Question 2. We are given the equation

(% +6z) + <ln(:1:) - 2)32’ —0

We can check this equation for exactness. Since

M(z,y) = 2 + 6z, N(z,y) = In(x) - 2
We compute that
oM 0 1y
By oy o=
ON 0

ax—am[ln(x)—Q] -

Since M, = N,, this equation is exact.
Now, for the solution we want to find a function ®(x,y) such that

0P Yy
o
S = Nay) = Infe) -2



Integrating the first equation with respect to x and the second equation with respect to y, we get
O(z,y) = / (% + 63:) dr = yln(z) + 32° + g(y)
Ba,y) = [ () ~2)dy = yla(e) 29 + F(z)

(Remember that because we are "undoing” partial derivatives, we get +f(z) or +¢(y) instead of
+C'.) Combining those two equations for ®, we see that

®(z,y) = yIn(z) + 32% — 2y

So our final answer is

yIn(z) + 32 — 2y =C

Answer to Question 3. We want to find the general solution of the following differential equation:

dy 1
de  z—vy

Method 1: “Flip” the variables
If we “flip” both sides of the equation by taking the reciprocal, we get the equation:

dj—x_
dy_ y

The clever part of this method is realizing that this is actually a first-order linear ODE for finding
x as a function of y. Rearranging things into standard form:

Since it’s a first order linear ODE, we can solve it using an integrating factor of:
ply) = of 1 = e

Multiplying the entire equation by this integrating factor, we get
_ydx

eV——eVr=—ye?
dy Y

The left hand side is an expression that comes from a product rule, so this can be written
(e_yx)/ = —ye ¥
Integrating both sides (this requires integration by parts for the right hand side),

e Yr = /—ye‘ydy =(y+ e V+C

Then multiplying both sides by e¥ to solve for x as a function of y, we get the general solution:

‘x:y—i-l—i—Cey‘

Method 2: Integrating factor to make exact



We can start with the original equation:

dy 1
dr = —vy
We can rearrange it into something that looks like an exact equation:
dy
B S A |
(@ —y)
dy
-1 —y)—=0
+@—y)
Unfortunately, when we check if this is exact, we get:
M, =0 N, =1

So we see that M, # N, so this equation is not exact as written. Since
Ny—M, 0-1

M -1
is a function of y (and more importantly, not a function of x), we can find an integrating factor of

the form p = u(y).
If we multiply both sides of the equation by u(y), we get

1

dy
—utp(z-y) =0
So in order for this to be exact, we would need
M = —pu(y) N = (z —y)u(y)
dp
M, =-E N, =
v =y 1(y)
dp
_aTy = u(y)
dp
ay —u(y)

This last line is a separable equation for p(y). Which has a solution of:

wy) =e?

So this means that if we multiply our original equation by e™Y, yielding:

- —ydy
y 2
eV +(x—ye e 0

which is now an exact equation. That means we want to find a function ®(x,y) with the following
partial derivatives:

o oP
oY S (e — eV
ox ¢ y (x=y)e
o= /—e_ydx o= /(ac —y)e Ydy
O =—ze ¥+ f(y) = —ge ¥ — /ye_ydy
O =—ze ¥+ f(y) ¢ =—ze ¥+ (y+1)e ¥ +g(x)



So in order for ®(z,y) to match both of these, we must have f(y) = (y+1)e™¥ and g(x) = 0. This
yields a general solution of:

O(z,y)=|-ze Y+ (y+1e?=C

This can be algebraically rearranged to be in the format of the other answers:

‘xzy—i—l—i—Cey‘

Method 3: Substitution
Starting with

dy 1
dr  z—y
use the substitution:
v=x—y
dv dy
de ~ dzx
dy dv
de ~ dz
Turning the original equation into
L
de v
This equation is separable:
@ _1 1= v—1
dx v v

/ Y dv:/dx
v—1

1
/1+ dv=x+C
v—1

v+lnv—1)=z+C

r—y+hnz—y—-1)=2+C

In(z—y—1)=y+C
r—y—1=0C¢

‘x:y+1+06y‘

10



Answer to Question 4.
(a) Since this is an autonomous equation, we’ll first look at the graph of % (vertical axis) vs y
(horizontal axis):

N

N

The equilibria occur where this graph crosses the horizontal axis, these are the values of y where

% = 0. Solving for them,

dy 3
—=y—y° =0
dt y—y

y1—y*) =y(1—y)(1+y) =0
y=0, 1, -1

To figure out whether these equilibrium solutions are stable, unstable, or semistable, we will look

at the sign of % nearby.

For y = —1, we see that for values of y less than -1, CC%’ if positive, so solutions are increasing.

For values of y slightly greater than —1, we see % is negative, so solutions are decreasing. Since

solutions below y = —1 are increasing and solutions above are decreasing, we get that

‘y = —1is a stable equilibrium‘

For y = 0, solutions slightly below are decreasing and solutions slightly above are increasing, so

‘y = 0 is an unstable equilibrium‘

For y = 1, solutions slightly below are increasing and solutions slightly above are decreasing, so

‘y = 11is a stable equilibrium‘
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(b)
The phase line looks like:
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Here the equilibria are in blue, and solutions are in red and black.

(c) If the initial condition is y(0) = —1, then the solution y(t) will approach the nearest stable
equilibrium at y = —1.
This specific solution y(t) is the one graphed in black above.

Answer to Question 5. We want to find the general solution of
y' =ty +y=0

given that y; =t is a solution.

This is a reduction of order problem, which means that we will look for a general solution of the
form

y(t) = i ()o(t) = to(t)

Taking derivatives,

Y =v+t
y// — 2,[)/ + tv//
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Plugging this back into the original equation,
y' —ty +y=0
W'+ 20 —t(v+t) +tv=0
t" + (2 -t =0
v 2
R
v t

If we define a new variable v = ¢/, then we have

ldu_t 2
wdt t

Multiplying both sides by ¢ and integrating,

[in- (s

2

In(u) = % o) + O

Exponentiating both sides, and replacing u with v/,

2
’ Clet

u="v t2

Integrating,
t2
e
v = Cl tTdt + CQ

And multiplying both sides by t,

t2
y:tv:Clt/ileH—CQt

Answer to Question 6. First, we want to find the solution y. of the homogeneous equation:
y(4) + 4y// -0
We do this by solving for the roots of the characteristic equation,

y(4) + 4y// -0

rt 4+ 4r? =0
r2(r2 +4) =0
r=0,0, £2¢

So the complementary solution is

Ye(t) = c1 + cat + c3 cos(2t) + ¢4 sin(2t)

Now for the particular solution Y. Based on the method of undetermined coefficients, our guess
for the particular solution will be

Y = (A+Bt+Ct)t
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where the A + Bt + Ct? term is based on the right hand side of the original equation, and the 2
term shows up because we have a double root of » = 0 in the characteristic equation. Multiplying
this out and taking derivatives,

Y = At* + B3 + Ct!
Y’ = 2At + 3Bt? + 4Ct3
Y" =24 + 6Bt + 12Ct?

Y™ = 6B + 24Ct
YW =240

Plugging this back into the original equation,

YW a4y’ =42
24C 4 4(2A 4 6Bt 4 12Ct%) = ¢2
48C't* + 24Bt + (8A +24C) = t*

Comparing like terms, we get a system of three equations for A, B, and C:

48C =1
24B =0
8A+24C' =0
The solution to this system of equations is:
-1 1
"1 PN O
so the particular solution is
t2
Yt)=——+ —
®) 16 + 48

Then the general solution is the combination of the complementary and particular solutions:

2 t4

y=1yc+Y =c1+ cat + c3cos(2t) + ¢4 sin(2t) — % + e

Answer to Question 7.
Let u(z,t) = X(2)T'(t). Then uy = XT', uze = X'T.
Plugging them into the PDE, we get

XT' = o*X"T
Dividing both sides by o?XT,
T/ X//
2T X

Since the left hand side depends on t only, and the right hand side depends on x only, both sides
must be equal to the same constant, which I will call —A:

T/ X//

2T~ X —A
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From this, we get two ODEs, which are:

T + a?XT =0
X"+ AX =0

Also, from the first boundary condition:

u(—L,t) = u(L,t)

and from the second boundary condition:

ug(—L,t) = uy(L,t)
X'(-L)=X'(L)

Thus we get the eigenvalue problem:

X" +2X =0
X(-L)=X(L), X'(-L)=X'(L)

Case 1: A< 0
Let A = —p2, where g > 0. Then our general solution is

X (x) = ¢1 cosh(px) + co sinh(ux)

and its derivative is
X'(x) = pey sinh(pux) + pes cosh(px)

Plugging in the first boundary condition X (L) = X (—L),

X(L) = X(~L)
¢y cosh(pl) + cosinh(uL) = ¢; cosh(—pL) + co sinh(—pL)

Since sinh() is an odd function and cosh() is an even function, we can rearrange this as follows:

¢1 cosh(uL) + ¢ sinh(puL) = ¢1 cosh(uL) — e sinh(pL)
2¢cgsinh(pl) =0

We note that sinh(pL) = 0 if and only if L = 0, which is not the case since we have defined u to
be positive. This means co = 0. Plugging in the second boundary condition X’(L) = X'(—L),

X'(L)=X'(-L)
peq sinh(pL) + peg cosh(puL) = peq sinh(—pL) 4 peg cosh(—pL)

which similarly simplifies as:

pey sinh(pl) + peg cosh(pul) = —pey sinh(pL) + pee cosh(pL)
2¢y sinh(pL) =0

which by the same reasoning as before requires that ¢; = 0. Therefore we have both ¢; = ¢5 = 0,
so we only get the trivial solution.
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Case 2: A=0
For this case we have X” = 0, so the general solution is:

X(z) =1+ cox

Plugging in the first boundary condition,

X(L)=X(-L)
c1+cl =c —col
202L =0

So ¢o = 0. For this case, the second boundary condition is actually always satisfied:

X'(L) = X'(-L)
Co = C9
But this places no restrictions on ¢y, which can be arbitrary.

Thus we have an eigenvalue of A\ = 0, with eigenfunction Xo(z) = 1.
For this value of A, we also get that 7" = 0, so Tp(t) is also an arbitrary constant.

Case 3: A >0
For this case, the general solution is:

X (2) = ¢1 cos(VAz) + ¢ sin(vVAx)

Taking its derivative,

X'(x) = —e1VAsin(VAz) + eV A cos(V )

Plugging in the first boundary condition,

X(L) = X(~L)

¢1 cos(VAL) + cosin(VAL) = ¢; cos(—VAL) 4 ¢ sin(—VAL)

¢1 cos(VAL) + casin(VAL) = ¢; cos(VAL) — ¢osin(VAL)
2¢asin(VAL) = 0

And plugging in the second boundary condition,

X/(1) = X'(~1L)

—c1VAsin(VAL) + caVA cos(VAL) = —e1VAsin(—VAL) + oV A cos(—VAL)

—e1VAsin(VAL) 4+ eaV A cos(VAL) = ¢;VAsin(VAL) + eaVA cos(VAL)
2¢1VAsin(VAL) = 0

Combining both of these conditions, the only we can get a nontrivial solution is if:

sin(VAL) =0

\f)\L:mr, n=123,...
2
/\:(%) : n=1,2,3,...
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So these are our eigenvalues A. In this case, both ¢; and cy are arbitrary, so the corresponding
eigenfunctions are:

Xn(z) = ¢ cos (%x) + co sin (%x)

For these eigenvalues, the ODE for T'(¢) becomes:
T 4 o? <n7r>2 _
(5

the solution to which is: )
T, (t) = e (9F%)7t
Relabelling the constants for convenience, our fundamental solutions are:

uo(a, 1) = Xo(@)To(t) = 5

and

un(z,t) = Xp(2)T(t) = ef(mLm)Qt (an cos (%x) + by, sin (%x))

and the general solution is a linear combination of the fundamental solutions:

oo
anm 2
u(z,t) = % + nzle_( i)t (an cos <n—L7T$> + by, sin (%x))
Now for the initial conditions. Plugging in ¢ = 0,
f(@) = u(x,0)
a > nm nm
f(z) = ?0 + nzz:l ap, COS (f:c> + by, sin (Tx>

from which we see that the coefficients a,, and b,, should be the coefficients of the Fourier series
expansion of f(z) on the interval [—L, L]. Therefore the complete answer is:

o0
_ % ,(m)%( (nj ) i (”l
u(z,t) 5 —&—;e L n €08 { % + by, sin Lm))
where
1 (L
an = . (x) cos (%m) dx
1 L
by, = — (x) sin (n—ﬂx> dx
L)t
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Answer to Question 8. (a) For the method of separation of variables, we look for solutions of
the form:
u(rd) = R(r)©(0)

Plugging this into Laplace’s equation in polar coordinates,

R// lR/ 1(_)//
I H e
R +7"R+7"2®

Separating variables,
7“2 R" rR! o
R "R "o
Since the left hand side depends only on r, and the right hand side only on 6, they both must be
equal to the same constant A:

7“2 R rR o
R "R @
We can use this to get the following ODEs for R(r) and O(6):

=A

0" +X0=0
R’ +rR — AR =0

In order for our solution to be well-defined in polar coordinates, we want to make sure that our
solution is the same when we increase 6 by 27, as this is just traveling around a circle back to the
same point. This means that u(r, 6) should be periodic in § with period 27.

More precisely, we need that for all angles 6:

u(r,0) = u(r,0 + 2m)
R(r)©(0) = R(r)O(0 + 2m)
©(0) = O(6 + 2)

This will serve in the role of boundary conditions for our ODE for ©(f). In other words, we are
looking for non-trivial solutions to:

0" + 16 =0, O(0) = O(0 + 2r)
For A\ < 0, our solutions for © are of the form:
O(0) = 1V 4 cpem VA
In order for this to be periodic,

©(0) = 6(0 + 27)
fe + coe —VA6 _ =c eVAO+2m) 4 coe —VA(O+2m)
1€f9+02€f f92mf+ce—f9 —2mv/x

= C1€

and matching like terms, we would need that:

21V A

c1 = ce and ¢ = 026_27“&

This only happens when ¢; = ¢o = 0, which is the trivial solution.
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For A = 0, our solutions for © are of the form:
@(9) =1+ 96
In order for this to be periodic,
O(0) =060 + 2m)
€1+ 20 = c1 + co(0 + 2m)
c1+ el =c+ 62(271') + 96
0= 02(271’)

CQZO

So ¢g = 0, but ¢; could be any constant. This means that ©(f) = ¢; works for any constant c;.
When A = 0, the equation for R is:
r?R" +rR =0

This is an Euler equation, so looking for solutions of the form R = r™,
m(m—1)+m=0
m? =0
So we have a repeated root at m = 0. This corresponds to a solution of:
Ro(r) = c1 + c21In(r)

Since the natural logarithm is not defined at the origin » = 0, if we want our solution u to be
defined at r = 0, we need to set co = 0, leaving:

Ro(r) =1
So for A = 0, we have that R can also be any constant. Thus we have an eigenvalue-eigenfunction
pair of:
o

A=0, ug(r,0) = 5

where ¢ could be any constant (I'm writing it this way since it will end up being useful later).
For A\ > 0, our solutions for © are of the form:

0(6) = Acos (\FAG) + Bsin (\59)
In order for this to be periodic,

O(0) = O©(0 + 27)
A cos (\&0) + Bsin (\F)\G) = Acos (\F)\(G + 27r)) + Bsin (ﬁ(@ + 277))

Using the angle addition trig identities, the right hand side becomes:
=A [cos (\FAH) cos (2#\5\) — sin (\ﬁ@) sin (277\5\)} +B [sin (\f)ﬁ) cos (27?\5\) + sin (277\5\) cos (\59)]
Grouping together the terms by 6,

— [Acos (27V/A) + Bsin (27VA) | cos (VA0) + [ Beos (2mVA) = Asin (27v/A) | sin (V20)
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Comparing like terms, A and B should satisfy the equations:

A = Acos (277\5) + Bsin (27‘(’\&)
B = Bcos (2%\5\) — Asin (2#\5)

This is always true for A = B = 0, but this corresponds to the trivial solution. However, for values
of A where the cosine term above is 1 and the sine term is 0, this would be true for any A and B.
More precisely, we want the values of A where:

cos (%ﬁ) —1 —  orV/A=2mn, n=1223.

sin (%ﬁ) ~0 —  2nVA=mn, n=123.

Since we want both to be true, we take the more restrictive condition that:

2V = 27n, n=123.
VA =n, n=123.
A =n?, n=1,23..

So these are our eigenvalues, and they have corresponding eigenfunctions:
©,(0) = Acos (nf) + Bsin (nf), n=123.
Now we want to solve for R(r) at these eigenvalues (/\ = n2). We get an Euler equation:
2 pi / 2
r"R'+rR —n"R=0

Looking for solutions of the form R = r", we plug this in and solve for m:

So R(r) looks like:
R,(r)=Ar" + Br "

However, because we want R to be defined at r = 0, we then take B = 0, leaving;:
R, (r) = Ar"

Putting this all together (and renaming some constants), our general solution is of the form:

u(r,0) = Rn(r)On(6)
n=0

u(r,0) = %0 + Z ™[ Ay cos(nf) + By, sin(nd)]

n=1

20



Now we still have to apply the Neumann boundary conditions. Taking the partial derivative with
respect to r,

Z nr’ A cos(nb) + By, sin(nb)]

Plugging in r = a, and setting it equal to f()
Zna [A, cos(nb) + By, sin(n)] = f(6), 0<60<2rm

This means that we want u,(a, ) to match the Fourier series for f(#) on the interval [0, 27]. Using
the formula for Fourier series coefficients, we get the following equations for A, and By:

1 2

na"lA, = = f(0) cos(nd)do
™ Jo
1 2w

na" B, = - f(0) sin(nd)db
T Jo

So our solution to the problem is:

oo
€o
=3 ngl [A;, cos(nb) + By, sin(nf)]

where the coefficients are given by:

1 2
A, = i f(0) cos(nb)do
1 2
Bn = m . f(@) Sln(ne)dtg
cp = any constant

(b) In our solution to part (a) , when we were enforcing the boundary conditions on u,, we got to
an equation of the form:

ur(a,0) = Zna"_l [Ay, cos(nf) + By sin(nb)] = f(0), 0<6<2rm

and then went on to take a Fourier series expansion of f(f). However, Fourier series usually have
a constant term <. While our formula for u(r,#) had this, when we took the derivative, this then
makes sure that u,«(r 0) does not have a constant term.

So for this problem to be solvable, we would need the % constant term of the Fourier series for

f(0) to be zero. Rephrasing this in terms of a condition on 7,

1 2
/0 £(0)do =0

s
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