
Math 2930 Worksheet
Wave Equation
D’Alembert’s Formula

Week 13

April 26th, 2019

D’Alembert’s Formula

For the wave equation:
a2uxx = utt

it turns out that solutions can always be written as:

u(x, t) = F (x+ at) +G(x− at)

for some functions F and G. This worksheet is designed to guide you through the process of using
this formula to solve wave equation problems.

Question 1. D’Alembert’s Formula - Initial Displacement
Consider the wave equation

a2uxx = utt

(a) Show that u(x, t) = F (x+ at) +G(x− at) satisfies the wave equation.

Suppose the initial conditions are:

u(x, 0) = f(x), ut(x, 0) = 0

in other words, the initial displacement is f(x) and the initial velocity is zero.

(b) Using the fact that the solution u(x, t) can be written in the form u(x, t) = F (x+at)+G(x−at),
show that:

F (x) +G(x) = f(x)

aF ′(x)− aG′(x) = 0



(c) Use the equations from part (b) to show that

u(x, t) =
f(x+ at) + f(x− at)

2

solves the wave equation with the given initial conditions.

Parts (a) through (c) assume we have an infinitely long string, i.e. no boundary conditions.

Let h be the function obtained by extending f into (−L, 0) as an odd function, and to other values
of x as a periodic function of period 2L. That is,

h(x) =

{
f(x), 0 ≤ x ≤ L,
−f(−x), −L < x < 0;

h(x+ 2L) = h(x)

(d) Show that:

u(x, t) =
h(x− at) + h(x+ at)

2

also satisfies the boundary conditions:

u(0, t) = 0, u(L, t) = 0

2



Question 2. D’Alembert’s Formula versus Separation of Variables
Consider the wave equation problem

a2uxx = utt

with boundary conditions
u(0, t) = u(L, t) = 0

and initial conditions
u(x, 0) = f(x), ut(x, 0) = 0

(a) Use separation of variables to show that the solution is of the form

u(x, t) =

∞∑
n=1

cn sin
(nπx
L

)
cos

(
anπt

L

)
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(b) Use the trigonometric identity

sin(A) cos(B) =
sin(A+B) + sin(A−B)

2

to write the solution from part (a) in the form F (x+ at) +G(x− at)

(c) Show that your solution from problem (1d) is equivalent to your solution from (2b).

[Hint : Think about the Fourier series expansion of h]
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Question 3. D’Alembert’s Formula - Initial Velocity Consider the wave equation

a2uxx = utt

in an infinite one-dimensional medium subject to the initial conditions

u(x, 0) = 0

ut(x, 0) = g(x)

in other words, the initial displacement is zero and the initial velocity is g(x).

(a) Using the fact that the solution u(x, t) can be written in the form u(x, t) = F (x+at)+G(x−at),
show that:

F (x) +G(x) = 0

aF ′(x)− aG′(x) = g(x)

(b) Use the equations from part (a) to show that

2aF ′(x) = g(x)

and therefore that F (x) is given by

F (x) =
1

2a

∫ x

x0

g(ξ)dξ + F (x0)

where x0 is arbitrary.

(c) Show that G(x) is given by:

G(x) = − 1

2a

∫ x

x0

g(ξ)dξ − F (x0)
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(d) Show that the final solution to this wave equation problem is

u(x, t) =
1

2a

∫ x+at

x−at
g(ξ)dξ

(e) Show that the solution of the problem

a2uxx = utt

u(x, 0) = f(x)

ut(x, 0) = g(x)

is actually the sum of your answers from questions (1c) and (3d):

u(x, t) =
f(x− at) + f(x+ at)

2
+

1

2a

∫ x+at

x−at
g(ξ)dξ
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Answer to Question 1. (a)
We start with the formula:

u(x, t) = F (x+ at) +G(x− at)

Taking partial derivatives with respect to x, using the Chain Rule,

∂u

∂x
= F ′(x+ at)

∂

∂x
(x+ at) +G′(x− at) ∂

∂t
(x− at)

= F ′(x+ at) +G′(x− at)
∂2u

∂x2
= F ′′(x+ at) +G′′(x− at)

Similarly, we can take partial derivatives with respect to t using the Chain Rule:

∂u

∂t
= F ′(x+ at)

∂

∂t
(x+ at) +G′(x− at) ∂

∂t
(x− at)

= aF ′(x+ at)− aG′(x− at)
∂2u

∂t2
= a2F ′′(x+ at) + a2G′′(x− at)

So we see that

a2
∂2u

∂x2
= a2F ′′(x+ at) + a2G′′(x− at) =

∂2u

∂t2

In other words, this means that u(x, t) is a solution of the wave equation.

(b) Starting with
u(x, t) = F (x+ at) +G(x− at)

and plugging in t = 0,
u(x, 0) = F (x+ 0) +G(x− 0)

and since our initial conditions say that u(x, 0) = f(x), we get one equation:

F (x) +G(x) = f(x)

For the other equation, we also start with

u(x, t) = F (x+ at) +G(x− at)

then taking a partial derivative with respect to t as in (a) ,

ut(x, t) = aF ′(x+ at)− aG′(x− at)

Plugging in t = 0,
ut(x, 0) = aF ′(x+ 0)− aG′(x− 0)

then using the initial condition that ut(x, 0) = 0,

aF ′(x)− aG′(x) = 0
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(c) From (b) we have the system of equations:

F (x) +G(x) = f(x)

aF ′(x)− aG′(x) = 0

First we rearrange the second equation,

aF ′(x) = aG′(x)

F ′(x) = G′(x)

then integrating both sides,
F (x) = G(x) + C

for some constant C. Plugging this into our first equation,

F (x) +G(x) = f(x)

(G(x) + C) +G(x) = f(x)

2G(x) = f(x)− C

G(x) =
f(x)− C

2

which we can then use to find

F (x) = G(x) + C =
f(x)− C

2
+ C =

f(x) + C

2

So plugging x+ at into our equation for F , and x− at into our equation for G,

u(x, t) = F (x+ at) +G(x− at)

=
f(x+ at) + C

2
+
f(x− at)− C

2

u(x, t) =
f(x+ at) + f(x− at)

2

(d) We have from the problem description that our solution is:

u(x, t) =
h(x+ at) + h(x− at)

2

Plugging in x = 0,

u(0, t) =
h(at) + h(−at)

2
and because h was constructed to be an odd function,

u(0, t) =
h(at)− h(at)

2
= 0

For the other boundary condition, we plug in x = L,

u(L, t) =
h(L− at) + h(L+ at)

2

and because h was constructed to be periodic with period 2L,

h(L− at) = h(L− at− 2L) = h(−L− at)

and because h was constructed to be an odd function,

u(L, t) =
h(−L− at) + h(L+ at)

2
=
−h(L+ at) + h(L+ at)

2
= 0
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Answer to Question 2.
(a) Using separation of variables, we look for solutions of the form u(x, t) = X(x)T (t). Plugging
this into the PDE,

a2uxx = utt

a2X ′′T = XT ′′

dividing both sides by a2XT ,
X ′′

X
=

T ′′

a2T

Since the left hand side depends only on x and the right hand side depends only on t, both sides
must be equal to the same constant, which I will call λ (you could use −λ instead if you prefer, it
won’t make a difference in the end),

X ′′

X
=

T ′′

a2T
= λ

We can rearrange this to give us a system of two ordinary differential equations,

X ′′ − λX = 0

T ′′ − a2λT = 0

The boundary and initial conditions on the PDE will then place some boundary and initial condi-
tions on X and T . For the first boundary condition, we get

u(0, t) = 0

X(0)T (t) = 0

If T (t) = 0 for all values of t, then we would just get the trivial solution. So instead we set

X(0) = 0

By similar arguments, we get that

u(L, t) = 0 =⇒ X(L) = 0

and
ut(x, 0) = 0 =⇒ T ′(0) = 0

(The initial condition u(x, 0) = f(x) is nonzero, so it won’t tell us anything about solutions to the
PDE.)
So X(x) must satisfy the eigenvalue problem:

X ′′ − λX = 0

X(0) = X(L) = 0

For the case when λ > 0, the characteristic equation is r2 − λ = 0, so the roots are r = ±
√
λ and

the general solution is:

X(x) = c1e
√
λx + c2e

−
√
λx

Plugging in the first boundary condition X(0) = 0,

X(0) = c1 + c2 = 0
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which means that c1 = −c2. Plugging in the second boundary condition X(L) = 0,

X(L) = c1e
√
λL + c2e

−
√
λL = 0

Using the fact that c1 = −c2,
c1

(
e
√
λL − e−

√
λL
)

= 0

Since λ > 0, we have that e
√
λL > e−

√
λL, so the only way this can be zero is if:

c1 = c2 = 0

which just leads to the trivial solution X(x) = 0.
For the case when λ = 0, our ODE for X is just:

X ′′ = 0

which we can just integrate twice to get the general solution

X(x) = c1x+ c2

Plugging in the first boundary condition X(0) = 0,

X(0) = c2 = 0

using this together with the second boundary condition X(L) = 0,

X(L) = c1L = 0 =⇒ c1 = 0

so this just leads to the trivial solution X(x) = 0.
For the case when λ < 0, it will help to define a new variable µ so that λ = −µ2. Then the general
solution is

X(x) = c1 cos(µx) + c2 sin(µx)

Plugging in the first boundary condition X(0) = 0,

X(0) = c1 = 0

Using this together with the second boundary condition,

X(L) = c2 sin(µL)

Setting c2 = 0 would just lead to the trivial solution, so instead

sin(µL) = 0

µL = nπ, n = 1, 2, 3, . . .

So the eigenvalues are

λn = −
(nπ
L

)2
, n = 1, 2, 3, . . .

with corresponding eigenfunctions

Xn = sin
(nπ
L
x
)
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Plugging our eigenvalues λ back into our differential equation for T (t), we get

T ′′ +
(anπ
L

t
)
T = 0

and the general solution is

T (t) = c1 cos
(anπ
L

t
)

+ c2 sin
(anπ
L

t
)

Since there is no initial velocity, we also have the initial condition T ′(0) = 0 from before, which
means

T ′(0) = c2
L

anπ
= 0

so we get that c2 = 0. Therefore our solutions T (t) are

Tn(t) = c1 cos
(anπ
L

t
)

and our fundamental solutions are

un(x, t) = Xn(x)Tn(t) = sin
(nπ
L
x
)

cos
(anπ
L

t
)

And the general solution is a linear combination of the fundamental solutions:

u(x, t) =
∞∑
n=1

cnun(x, t)

u(x, t) =

∞∑
n=1

cn sin
(nπ
L
x
)

cos
(anπ
L

t
)

The initial condition also requires that

u(x, 0) =

∞∑
n=1

cn sin
(nπ
L
x
)

= f(x)

on the interval x ∈ [0, L]. So cn are the coefficients of the Fourier sine series expansion of f(x).

(b) Using the given trig identity,

sin
(nπ
L
x
)

cos
(anπ
L

t
)

=
1

2
sin
(nπ
L

(x+ at)
)

+
1

2
sin
(nπ
L

(x− at)
)

∞∑
n=1

cn sin
(nπ
L
x
)

cos
(anπ
L

t
)

=
1

2

∞∑
n=1

cn sin
(nπ
L

(x+ at)
)

+
1

2

∞∑
n=1

cn sin
(nπ
L

(x− at)
)

So we see that this splits up as F (x+ at) +G(x− at) where

F (x) = G(x) =
1

2

∞∑
n=1

cn sin
(nπ
L
x
)
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(c) We recall from (1d) that the solution to this wave equation is

u(x, t) =
h(x+ at) + h(x− at)

2

where h(x) is the odd periodic extension of f(x).
We can also notice from part (a) that the coefficients cn are chosen such that they form the Fourier
sine series expansion of f(x). This means that they converge to the exact same odd periodic
extension of f(x):

h(x) =
∞∑
n=1

cn sin
(nπ
L
x
)

It follows that

F (x) = G(x) =
h(x)

2

And our functions F and G from part (b) satisfy

F (x+ at) +G(x− at) =
h(x+ at) + h(x− at)

2

In other words. the two solutions are equivalent.

Answer to Question 3. (a) Again, our solutions are of the form

u(x, t) = F (x+ at) +G(x− at)

Plugging in t = 0, we get that

u(x, 0) = F (x+ 0) +G(x− 0) = 0

which gives our first equation

F (x) +G(x) = 0

For the second equation, we first take the partial derivative with respect to t to get

ut(x, t) = aF ′(x+ at)− aG′(x− at)

then plugging in t = 0,
ut(x, 0) = aF ′(x+ 0)− aG′(x− 0) = g(x)

which gives our second equation

aF ′(x)− aG′(x) = g(x)

(b) The first equation gives
F (x) = −G(x)

which means that after taking the derivative of both sides,

F ′(x) = −G′(x)

Using that in the second equation,

aF ′(x)− aG′(x) = 2aF ′(x) = g(x)
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Dividing by 2a,

F ′(x) =
1

2a
g(x)

Then integrating both sides and using the fundamental theorem of calculus,

F (x)− F (x0) =

∫ x

x0

F ′(ξ)dξ =
1

2a

∫ x

x0

g(ξ)dξ

which tells us that F (x) is given by

F (x) =
1

2a

∫ x

x0

g(ξ)dξ + F (x0)

(c) Since F (x) = −G(x), we easily get

G(x) = − 1

2a

∫ x

x0

g(ξ)dξ − F (x0)

(d) Combining our answers from (b) and (c) ,

F (x+ at) +G(x− at) =
1

2a

∫ x+at

x0

g(ξ)dξ + F (x0)−
1

2a

∫ x−at

x0

g(ξ)dξ − F (x0)

=
1

2a

∫ x0

x−at
+

1

2a

∫ x+at

x0

u(x, t) =
1

2a

∫ x+at

x−at
g(ξ)dξ

(e) There are two different ways of showing this, either using linearity, or just by checking directly.
First, the linear way. If we write our two solutions as

u(x, t) =
f(x− at) + f(x+ at)

2
, v(x, t) =

1

2a

∫ x+at

x−at
g(ξ)dξ

Then since u and v both solve the wave equation, we can check that u+ v solves the wave equation

a2(u+ v)xx = a2uxx + a2vxx = utt + vtt = (u+ v)tt

and using our answers from the previous questions, we can see that they also solve the initial
conditions:

u(x, 0) + v(x, 0) = f(x) + 0 = f(x)

ut(x, 0) + vt(x, 0) = 0 + g(x) = g(x)

We can also check that they solve the boundary conditions directly:

u(x, 0) =
f(x) + f(x)

2
+

1

2a

∫ x

x
g(ξ)dξ =

2f(x)

2
+ 0 = f(x)
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and using the fundamental theorem of calculus,

ut(x, t) =
−af ′(x− at) + af ′(x+ at)

2
+

1

2a
g(x+ at)

∂

∂t
(x+ at)− 1

2a
g(x− at) ∂

∂t
(x− at)

ut(x, t) =
−af ′(x− at) + af ′(x+ at)

2
+

1

2
g(x+ at) +

1

2
g(x− at)

ut(x, 0) =
−af ′(x) + af ′(x)

2
+
g(x) + g(x)

2
= g(x)

and thus this solves the wave equation and both boundary conditions.
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