Math 2930 Worksheet Week 13

Wave Equation April 26th, 2019
D’Alembert’s Formula

D’Alembert’s Formula

For the wave equation:
2
G Ugy = Utt

it turns out that solutions can always be written as:
u(z,t) = F(xz + at) + G(x — at)

for some functions F' and G. This worksheet is designed to guide you through the process of using
this formula to solve wave equation problems.

Question 1. D’Alembert’s Formula - Initial Displacement
Consider the wave equation

2
G Ugy = Utt

(a) Show that u(z,t) = F(z + at) + G(x — at) satisfies the wave equation.

Suppose the initial conditions are:

u(z,0) = f(), u(x,0) =0
in other words, the initial displacement is f(x) and the initial velocity is zero.

(b) Using the fact that the solution u(x,t) can be written in the form u(z,t) = F(z+at)+G(x—at),
show that:

F(z) +G() = £(2)
aF'(z) —aG'(x) =0



(c) Use the equations from part (b) to show that

flx+at) + f(x — at)

u(z,t) = 5

solves the wave equation with the given initial conditions.

Parts (a) through (c) assume we have an infinitely long string, i.e. no boundary conditions.

Let h be the function obtained by extending f into (—L,0) as an odd function, and to other values
of x as a periodic function of period 2L. That is,

(d) Show that:
h(xz — at) + h(x + at)

u(x,t) = 5

also satisfies the boundary conditions:

u(0,t) =0, u(L,t) =0



Question 2. D’Alembert’s Formula versus Separation of Variables
Consider the wave equation problem
2 —
A" Ugy = Utt

with boundary conditions
u(0,t) =u(L,t) =0

and initial conditions
u(z,0) = f(x), ug(z,0) =0

(a) Use separation of variables to show that the solution is of the form

o0
t
u(x,t) = ch sin (ﬂ;) cos (mzr >

n=1




(b) Use the trigonometric identity

sin(A + B) + sin(A — B)

sin(A) cos(B) = 5

to write the solution from part (a) in the form F(z + at) + G(z — at)

(c) Show that your solution from problem (1d) is equivalent to your solution from (2b).

[Hint: Think about the Fourier series expansion of h]



Question 3. D’Alembert’s Formula - Initial Velocity Consider the wave equation
a2u:r;ac = Utt
in an infinite one-dimensional medium subject to the initial conditions

u(xz,0) =0
ug(,0) = g(x)
in other words, the initial displacement is zero and the initial velocity is g(z).

(a) Using the fact that the solution u(z,t) can be written in the form u(z,t) = F(z+at)+G(z—at),
show that:

F(z)+G(z) =0
aF'(z) —aG'(z) = g(x)

(b) Use the equations from part (a) to show that
20F(z) = g(x)

and therefore that F'(z) is given by

where x( is arbitrary.

(c) Show that G(x) is given by:

) = —= [ g(e)de — F(ao)

2a /4,



(d) Show that the final solution to this wave equation problem is

z+at
uet) =5 [ gl

r—at

(e) Show that the solution of the problem

QQUCMC = Ut
u(z,0) = f(z)
Ut(x7 O) = g(l‘)

is actually the sum of your answers from questions (1c) and (3d):

f(z —at) + f(x + at) N 1 /“‘“t

t) = —
u(z, ) 5 5

g(§)d¢

—at



Answer to Question 1. (a)
We start with the formula:
u(z,t) = F(xz + at) + G(x — at)

Taking partial derivatives with respect to z, using the Chain Rule,

ou 0 , d

%—F(:U+at)8x(:c+at)+G(:U—at)at(x—at)
= F'(z + at) + G'(z — at)

&*u " 1"

@7}7 (x+at) + G"(z — at)

Similarly, we can take partial derivatives with respect to t using the Chain Rule:

ou 0 0
— =F - "(z — at)— (z — at
5 (a:+at)at(:n—|—at)+G(1: a)at(a: at)
= aF'(xz + at) — aG'(z — at)
82u 2 2~
w:aFLT"_at)‘i‘aG(x—at)
So we see that
9%u 9%u
2 2 2
(Zw:aF”(ﬁ"‘at)‘{‘aG”(l'—at):w

In other words, this means that u(x,t) is a solution of the wave equation.

(b) Starting with
u(z,t) = F(xz + at) + G(x — at)

and plugging in t = 0,
u(,0) = F(z +0) + Gz — 0)

and since our initial conditions say that u(z,0) = f(z), we get one equation:

|F(x)+ G(2) = f(x)]

For the other equation, we also start with
u(z,t) = F(xz + at) + G(x — at)
then taking a partial derivative with respect to t as in (a) ,
ut(z,t) = aF'(z + at) — aG'(x — at)

Plugging in t = 0,
u(z,0) = aF'(z +0) — aG'(x — 0)

then using the initial condition that w(x,0) = 0,

aF'(x) —aG'(x) =0




(c) From (b) we have the system of equations:
F(z)+ G(x)
aF'(z) — aG'(x) =

First we rearrange the second equation,

/()

then integrating both sides,
F(z)=G(z)+C
for some constant C. Plugging this into our first equation,
F(z) + G(z) = f(x)
(G(x) +C) + G(z) = f(x)
2G(x) = f(z) -
fl@)-C
(r) = 12

I
&hkn

G(x

which we can then use to find

o) =C oS +C

So plugging = + at into our equation for F', and z — at into our equation for G,
u(z,t) = F(z + at) + G(x — at)
fle+at)+C  f(x—at)—C
- 2 * 2

t —at
u(z,t) = flz +at) + flz — at)
2
(d) We have from the problem description that our solution is:
h(xz + at) + h(z — at)
2

F(z)=G(z)+C =

u(x,t) =
Plugging in z = 0,
h(at) + h(—at)
2
and because h was constructed to be an odd function,

h(at) — h(at)
2

For the other boundary condition, we plug in z = L,

h(L — at) + h(L + at)

2

and because h was constructed to be periodic with period 2L,

h(L —at) = h(L —at — 2L) = h(—L — at)

u(0,t) =

u(0,t) = =0

u(L,t) =

and because h was constructed to be an odd function,

h(—L —at) + h(L +at)  —h(L+ at) + h(L + at)

L,t) = =
u(L, 1) ; ;

=0




Answer to Question 2.
(a) Using separation of variables, we look for solutions of the form u(z,t) = X (z)T(t). Plugging
this into the PDE,

2
a4 Ugy = Utt
a?X"T = XT"

dividing both sides by a>XT,

X// T//

X a’T
Since the left hand side depends only on x and the right hand side depends only on ¢, both sides
must be equal to the same constant, which T will call A (you could use —\ instead if you prefer, it

won’t make a difference in the end),

X/l T//
X aT
We can rearrange this to give us a system of two ordinary differential equations,
X" AX =0
T" —a*\T =0

The boundary and initial conditions on the PDE will then place some boundary and initial condi-
tions on X and T'. For the first boundary condition, we get

u(0,t)

X(0)T(t) =

0
0
If T'(t) = 0 for all values of ¢, then we would just get the trivial solution. So instead we set
X(0)=0
By similar arguments, we get that
u(ll,t)=0 = X(L)=0

and
u(z,0) =0 = T'(0)=0

(The initial condition u(x,0) = f(z) is nonzero, so it won’t tell us anything about solutions to the
PDE.)
So X (z) must satisfy the eigenvalue problem:
X"—2AX =0
X(0)=X(L)=0
For the case when \ > 0, the characteristic equation is 72 — X = 0, so the roots are r = +v/\ and

the general solution is:
X(z) = creV?® + coe Ve

Plugging in the first boundary condition X (0) = 0,

X(O):C1+C2:O



which means that ¢; = —cy. Plugging in the second boundary condition X (L) = 0,
X(L) = c1eV M 4 VAL =

Using the fact that ¢; = —c9,
o (eﬁL _ e—ﬁL) —0

Since A > 0, we have that eVAL > e_ﬁL, so the only way this can be zero is if:
Cl] = Cy = 0

which just leads to the trivial solution X (x) = 0.
For the case when A = 0, our ODE for X is just:

X" =0
which we can just integrate twice to get the general solution
X(z) =c1z+ o
Plugging in the first boundary condition X (0) = 0,
X(0)=c2=0
using this together with the second boundary condition X (L) = 0,
X(L)y=caL=0 = ¢ =0

so this just leads to the trivial solution X (x) = 0.
For the case when A < 0, it will help to define a new variable  so that A = —u?. Then the general
solution is

X(z) = ¢ cos(px) + cosin(pz)

Plugging in the first boundary condition X (0) = 0,
X(0)=c1=0
Using this together with the second boundary condition,
X(L) = cosin(pl)
Setting c; = 0 would just lead to the trivial solution, so instead
sin(uL) =0

pL=nm, n=123,...

So the eigenvalues are

2
An:—(%r) C n=1,2,3,...

with corresponding eigenfunctions
. /nm
X, = sin <fw>

10



Plugging our eigenvalues A\ back into our differential equation for T'(t), we get

anm

1W+(LQT:o

and the general solution is
T(t) = c1 cos (?t) + ¢ sin (?t)

Since there is no initial velocity, we also have the initial condition 77(0) = 0 from before, which
means

L
T'(0) = cp—— =0
anTm

so we get that co = 0. Therefore our solutions T'(t) are

T,.(t) = ¢y cos (?t)

and our fundamental solutions are

up(z,t) = Xy, (2)T,(t) = sin <%l‘) cos <?t>

And the general solution is a linear combination of the fundamental solutions:

u(z,t) = Z Cntin(2,1)
n=1

o0
nm anm
= X ensin (7] cos (F71)
u(x,t) 7;cnsm 7 %) cos(—

The initial condition also requires that

u(zx,0) = iC" sin (n%a:) = f(x)
n=1

on the interval z € [0, L]. So ¢, are the coefficients of the Fourier sine series expansion of f(z).

(b) Using the given trig identity,

o () (1) - Jsn (o a0 + o ()
S1n I X | COS I = 281H I X a 28111 I i a

R nmw anm 1 & nmw 1 < nmw
; Cp Sin <Tl‘) cos <Tt> =35 Z Cp Sin (T(x + at)) + 5 Z Cp Sin <f(az - at))

n=1 n=1
So we see that this splits up as F(x + at) + G(x — at) where
F(z)=G(z) = }ic sn(—x)
- 2 n=1 "

11



(c) We recall from (1d) that the solution to this wave equation is

h(z + at) + h(z — at)

u(x,t) = 5

where h(zx) is the odd periodic extension of f(zx).
We can also notice from part (a) that the coefficients ¢,, are chosen such that they form the Fourier
sine series expansion of f(z). This means that they converge to the exact same odd periodic

extension of f(x):
h(z) = z:l Cp, Sin (n—;x)
It follows that
F(r) =G(z) = ——
And our functions F' and G from part (b) satisfy

h(z + at) + h(x — at)
2

F(z +at) + Gz — at) =

In other words. the two solutions are equivalent.

Answer to Question 3. (a) Again, our solutions are of the form
u(z,t) = F(xz + at) + G(x — at)
Plugging in t = 0, we get that
u(z,0) =F(x+0)+G(x—-0)=0

which gives our first equation

| F(z)+ G(z) = 0

For the second equation, we first take the partial derivative with respect to ¢ to get
ug(z,t) = aF'(z + at) — aG'(x — at)

then plugging in ¢ = 0,
ui(z,0) = aF'(z +0) — aG'(z — 0) = g(z)

which gives our second equation

aF'(z) — aG'(z) = g(x)

(b) The first equation gives
F(z) = =G(x)

which means that after taking the derivative of both sides,
Fl(z) = =G'(x)
Using that in the second equation,

aF'(r) —aG'(z) = 2aF'(z) = g(2)

12



Dividing by 2a,
()
= —g(x
2ag

Then integrating both sides and using the fundamental theorem of calculus,

F'(x)

T

F(o) ~ Fa) = |

zo

F(©d =5 [ g(e)de

which tells us that F'(x) is given by

(c) Since F(x) = —G(x), we easily get

1 X

2a /4,

G(x) = 9(§)d§ — F(xo)

(d) Combining our answers from (b) and (c) ,

T+at zr—at
F(x+at) + Gz — at) = — / 9(€)dE + F(zg) — — / 9(€)de — F(xo)

2a /4, 2a J,,
1 X0 1 xr+at

2a r—at 2a ts)

z+at
uet) =5 [ gl

r—at

(e) There are two different ways of showing this, either using linearity, or just by checking directly.
First, the linear way. If we write our two solutions as

f(z —at) + f(z + at) o(t) = 1 /a:+at
’ 2a

u(a,t) = : ,

9(§)ds§

r—at
Then since v and v both solve the wave equation, we can check that u—+ v solves the wave equation
2 _ 2 2. _ _
a” (U~ V) gy = A Upgy + A Vpg = U + Vg = (U + V)t

and using our answers from the previous questions, we can see that they also solve the initial
conditions:
u(z,0) + v(z,0) = f(x) +0 = f(z)

ug(x,0) + vr(2,0) = 0+ g(z) = ()

We can also check that they solve the boundary conditions directly:

LGRS (G P

u(z,0) = 5 —l—% 5 +0=f(x)

13



and using the fundamental theorem of calculus,

R i “t); af (z+ab) ig(m + at)%(:n +at) — %g(:ﬁ - at)%(:p ~ at)
up(z,t) = M Gl at); af (w+at) %g(x +at) + %g(:ﬁ — at)
o)~ L@ 0 ) o) Tole)

and thus this solves the wave equation and both boundary conditions.

14



