
Math 2930 Worksheet
Heat Equation

Week 12

April 19th, 2019

Solving PDEs with Separation of Variables

Given a partial differential equation (PDE) such as the heat equation

∂u

∂t
= a2∂

2u

∂x2
, u(x, 0) = f(x)

we can break down the process of solving it into the following steps:

• Use separation of variables, i.e. assume that the solutions are a product u(x, t) = X(x)T (t)
and reduce the equation to a system of two ordinary differential equations.

• Write down the boundary conditions for X(x) and solve the boundary value problem.

• Find the fundamental solutions and write down the general solution of the PDE.

• Find a formula for the coefficients in the general solution by using the initial condition
u(x, 0) = f(x).

Question 1. Heat equation with insulated ends
Consider a thin pipe placed along the x-axis with ends at x = 0 and x = π. The pipe is filled with
a mixture of mostly water, with a small amount of a certain chemical. As the chemical diffuses
through the pipe, the concentration u(x, t) of the chemical at location x and time t is governed by
the heat equation:

∂u

∂t
=
∂2u

∂x2

Suppose the initial concentration is given by:

u(x, 0) = x, x ∈ [0, π].

If the ends of the pipe are closed so that none of the chemical can escape, the boundary conditions
are:

ux(0, t) = 0, ux(π, t) = 0, t ≥ 0

(a) Assuming that u(x, t) = X(x)T (t), find ordinary differential equations that are satisfied by
X(x) and T (t) using separation of variables.



(b) Given the boundary conditions for u:

ux(0, t) = ux(π, t) = 0 for all t ≥ 0

Use these to find boundary conditions for X(x).

(c) Solve the eigenvalue problem for X(x) corresponding to what you found in (b) .

(d) For the eigenvalues you found in part (c), solve the corresponding ODE for T (t).
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(e) Take a linear combination of all of the fundamental solutions un(x, t) to get the general solution
u(x, t) of this heat equation.

(f) Now use the initial condition:

u(x, 0) = x, x ∈ [0, L].

To find the coefficients in your general solution from part (e) .
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Question 2. Heat equation with mixed boundary conditions

Consider a thin rod of uniform cross-section and homogeneous material placed along the x-axis
with ends at x = 0 and x = L. Heat conduction in the rod is described by the heat equation

α2uxx = ut, x ∈ [0, L], t ≥ 0

Assume one end is kept at constant temperature and one end is insulated. The boundary conditions
are

u(0, t) = 0, ux(L, t) = 0, t ≥ 0

Find the general solution of this heat equation problem.
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Question 3. Heat equation in two spatial dimensions
(a) The heat conduction equation in two spatial dimensions x and y is:

α2(uxx + uyy) = ut

Assuming that u(x, y, t) = X(x)Y (y)T (t), show that X(x), Y (y), and T (t) satisfy the following
ordinary differential equations:

X ′′ + µX = 0

Y ′′ + (λ− µ)Y = 0

T ′ + α2λT = 0

where λ and µ are constants.

(b) The heat conduction equation in two space dimensions may also be expressed in polar coordi-
nates as:

α2

(
urr +

1

r
ur +

1

r2
uθθ

)
= ut

Assuming that u(r, θ, t) = R(r)Θ(θ)T (t), find ordinary differential equations that are satisfied by
R(r), Θ(θ), and T (t).
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Question 4. Conserved quantities
Let u(x, t) be a solution of the heat equation α2uxx = ut, where x ∈ [0, L] and t ≥ 0. We can think
of u(x, t) as describing the density of “heat particles” in a metal rod at location x and time t. Then
the quantity:

E(t) =

∫ L

0
u(x, t)dx

would be the total number of “heat particles” in the rod at time t.

(a) Suppose that the ends of the rod are insulated, i.e. the boundary conditions are:

ux(0, t) = 0, ux(L, t) = 0

Show that E(t) is constant. (Hint: what is dE
dt ?)

(b) Now suppose that the ends of the rod are connected together, i.e. we apply the circular
boundary conditions:

u(0, t) = u(L, t), ux(0, t) = ux(L, t)

Show that E(t) is constant.
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Question 5. Diffusion as a limit of random walks
Let the function v(x, t) describe the number of particles at a location x and time t in a one-
dimensional settting. Suppose that we divide up our rod into segments of length ∆x.

. . . . . .∆x ∆x ∆x ∆x

Now, suppose that in an interval of time ∆t, each particle moves independently at random a
distance ∆x to the right with probability 1/2, and distance ∆x to the left with probability 1/2.

. . . . . .

t ∆x ∆x ∆x. . . . . .

t+ ∆t ∆x ∆x ∆x

1
2

1
2

Then v(x, t) satisfies the following equation: 1

v(x, t+ ∆t) =
1

2
v(x+ ∆x, t) +

1

2
v(x−∆x, t)

Assume that v(x, t) is smooth enough that we can expand it in a Taylor series.

Show that if ∆x → 0 and ∆t → 0 in such a way that (∆x)2

∆t → 1, then v(x, t) satisfies the heat
equation:

∂v

∂t
=

1

2

∂2v

∂t2

1This formula for v(x, t+∆t) also describes a method for numerically approximating solutions to the heat equation.
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Answer to Question 1. (a)
We start by looking for solutions of the form

u(x, t) = X(x)T (t)

Plugging this into the heat equation,

∂u

∂t
=
∂2u

∂x2

∂

∂t

[
X(x)T (t)

]
=

∂2

∂x2

[
X(x)T (t)

]
X(x)T ′(t) = X ′′(x)T (t)

Dividing both sides by X(x)T (t), we get

T ′(t)

T (t)
=
X ′′(x)

X(x)

Since the left hand side depends on t only, and the right hand side depends on x only, both sides
must be equal to the same constant, which we will call λ:

T ′(t)

T (t)
=
X ′′(x)

X(x)
= λ

Which we can rearrange to get the ODEs:

X ′′(x)− λX(x) = 0

T ′(t)− λT (t) = 0

(b) The boundary conditions are:

ux(0, t) = ux(π, t) = 0

Applying these to u(x, t) = X(x)T (t), we get

X ′(0)T (t) = 0

X ′(π)T (t) = 0

Having T (t) = 0 for all t would just lead to the trivial solution, so instead we have the boundary
conditions:

X ′(0) = X ′(π) = 0

(c) Our eigenvalue problem is:

X ′′ − λX = 0, X ′(0) = X ′(π) = 0

Let’s break it down into three cases:
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Case 1: λ > 0 (distinct real roots)

In this case, we have real distinct roots ±
√
λ of the characteristic equation. The solution is of the

form:
X(x) = C1 cosh(

√
λx) + C2 sinh(

√
λx)

(We could also do this part with e
√
λx and e−

√
λx instead of the hyperbolic trig functions). Taking

derivatives,
X ′(x) =

√
λC1 sinh(

√
λx) +

√
λC2 cosh(

√
λx)

And plugging in the boundary conditions, we get

X ′(0) =
√
λC2 = 0

since we assumed that λ > 0, it follows that C2 = 0. Using this, the other boundary condition is:

X ′(π) =
√
λC1 sinh(

√
λπ) = 0

Since λ > 0, and sinh() of something positive is also positive, the only remaining option is

C1 = C2 = 0

so we only get the trivial solution X(x) = 0.

Case 2: λ = 0 (repeated roots)

In this case, our differential equation is just

X ′′ = 0

so we can integrate twice to get
X(x) = C1x+ C2

And applying the boundary conditions,

X ′(0) = X ′(π) = C1 = 0

so X = C2 is a solution for any constant C2. We will take C2 = 1, so that we get the followingeigen-
value/eigenfunction pair:

Eigenvalue: λ0 = 0

Eigenfunction: X0 = 1

Case 3: λ < 0 (complex roots)

In this case, it will be helpful to define a new variable µ such that

λ = −µ2, µ > 0

Then the solutions to our differential equation are

X(x) = C1 cos(µx) + C2 sin(µx)

Taking the derivative,
X ′(x) = −µC1 sin(µx) + µC2 cos(µx)
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Plugging in the first boundary condition,

X ′(0) = µC2 = 0

since µ > 0 by definition, this means that

C2 = 0

Using this when applying the second boundary condition,

X ′(π) = −µC1 sin(µπ) = 0

Since µ > 0, and C1 = 0 would just lead to the trivial solution, we will instead set

sin(µπ) = 0

µπ = nπ, n = 1, 2, 3, . . .

µ = n, n = 1, 2, 3, . . .

So our eigenvalues and eigenfunctions are:

Eigenvalues: λn = −n2, n = 1, 2, 3, . . .

Eigenfunctions: Xn = cos(nx)

(d) For λ0 = 0, the ODE for T is just:
T ′(t) = 0

The solution to which is clearly
T0 = C0

where C0 is an arbitrary constant.

For λn = −n2, the ODE for T is:
T ′ + n2T = 0

which we can also write as
T ′ = −n2T

we know that the solution to this is

Tn(t) = Cne
−n2t

where Cn is an arbitrary constant.

(e) Our fundamental solutions are:

u0(x, t) =
C0

2

(I added the 1/2 in order to make part (f) simpler, but it’s not necessary.)
Our other fundamental solutions are:

un(x, t) = Xn(x)Tn(t) = Cn cos(nx)e−n
2t

To get the general solution, we take a linear combination of our fundamental solutions:

u(x, t) =
∞∑
n=0

un(x, t)
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u(x, t) =
C0

2
+
∞∑
n=1

Cn cos(nx)e−n
2t

(f) To satisfy the initial condition, we plug in t = 0 to get

u(x, 0) = x =
C0

2
+

∞∑
n=1

Cn cos(nx)

So we need to find the cosine series expansion of f(x) = x.
In order to get the cosine series expansion, we extend f(x) = x so that it is an even function on
[−π, π]. The graph would look like:

where the solid red line is the original function, and the blue dashed line is its extension to [−π, 0].
We can then calculate the cosine series coefficents as the Fourier series coefficients of the above
graph:

C0 =
2

π

∫ π

0
xdx =

2

π

[
π2

2
− 0

]
= π

and we can calculate the other coefficients as:

Cn =
2

π

∫ π

0
x cos(nx)dx

Integrating by parts,

U = x, dV = cos(nx)dx

dU = dx, V =
1

n
sin(nx)
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so

Cn =
2

π

[
x

n
sin(nx)

∣∣∣∣π
0

−
∫ π

0

1

n
sin(nx)

]
=

2

π

[
π

n
sin(nπ)− 0

n
sin(0) +

1

n2
cos(nx)

∣∣∣∣π
0

]
=

2

π

[
cos(nπ)− cos(0)

n2

]
=

2

n2π
[(−1)n − 1]

Putting these coefficients back into the general solution, our final answer is:

u(x, t) =
π

2
+
∞∑
n=1

2

n2π
[(−1)n − 1] cos(nx)e−n

2t

Answer to Question 2. We will begin by using separation of variables. We look for solutions of
the form:

u(x, t) = X(x)T (t)

Plugging this into the heat equation,

α2uxx = ut

α2(X(x)T (t))xx = (X(x)T (t))t

α2X ′′(x)T (t) = X(x)T ′(t)

Dividing both sides by α2X(x)T (t),
X ′′(x)

X(x)
=

T ′(t)

α2T (t)

(You don’t have to divide by α2, but I find it easiest to try and keep the eigenvalue problem for X
as simple as possible.) Since the left hand side depends only on x and the right hand side depends
only on t, they must both be equal to the same constant λ:

X ′′(x)

X(x)
=

T ′(t)

α2T (t)
= λ

which we can rearrange to get the following ODEs for X(x) and T (t):

X ′′ − λX = 0

T ′ − α2λT = 0

Now we want to turn our boundary conditions for u into boundary conditions for X(x). The first
boundary condition is:

u(0, t) = 0

X(0)T (t) = 0

And since T (t) = 0 for all t would just lead to the trivial solution, we will instead set

X(0) = 0
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Similarly for the other boundary condition,

ux(L, t) = 0

X ′(0)T (t) = 0

X ′(0) = 0

So our eigenvalue problem for X(x) is:

X ′′ − λX = 0, X(0) = X ′(L) = 0

which we will break down into three cases as usual:

Case 1: λ > 0 (distinct real roots)

In this case, our general solution is

X(x) = C1 cosh(
√
λx) + C2 sinh(

√
λx)

Plugging in the first boundary condition,

X(0) = C1 = 0

so we have that
X(x) = C2 sinh(

√
λx)

Taking the derivative,
X ′(x) = C2

√
λ cosh(

√
λx)

Then plugging in the second boundary condition,

X ′(L) = C2

√
λ cosh(

√
λ) = 0

Since we assumed that λ > 0, and cosh() of something positive is also positive, the only possibility
is that C2 = 0 and then we just have the trivial solution X(x) = 0.

Case 2: λ = 0 (repeated roots)

In this case, our differential equation is just

X ′′ = 0

so we can integrate twice to get the general solution:

X(x) = C1x+ C2

Plugging in the first boundary condition,

X(0) = C2 = 0

And plugging in the second boundary condition,

X ′(L) = C1 = 0

so we only get the trivial solution X(x) = 0.
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Case 3: λ < 0 (complex roots)

In this case, to make things simpler, I will define a new variable µ such that

λ = −µ2, µ > 0

Then the general solution is
X(x) = C1 cos(µx) + C2 sin(µx)

Plugging in the first boundary condition,

X(0) = C1 = 0

So
X(x) = C2 sin(µx)

Taking the derivative,
X ′(x) = µC2 cos(µx)

And plugging in the second boundary condition,

X ′(L) = µC2 cos(µL) = 0

Since µ > 0, and setting C2 = 0 would just lead to the trivial solution, to get something nontrivial
we need

cos(µL) = 0

µL = (2n− 1)
π

2
, n = 1, 2, 3, . . .

µ =
(2n− 1)π

2L
, n = 1, 2, 3, . . .

So the eigenvalues are:

λn = −
(

(2n− 1)π

2L

)2

, n = 1, 2, 3, . . .

with corresponding eigenfunctions:

Xn(x) = sin

(
(2n− 1)π

2L
x

)
Now we will also solve for T (t) with those eigenvalues λ:

T ′ +

(
(2n− 1)π

2L

)2

T = 0

Tn(t) = Cne
−
(

(2n−1)π
2L

)2
t

So the fundamental solutions are:

un(x, t) = Xn(x)Tn(t) = Cn sin

(
(2n− 1)π

2L
x

)
e
−
(

(2n−1)π
2L

)2
t

and the general solution is:

u(x, t) =

∞∑
n=1

un(x, t)
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u(x, t) =
∞∑
n−1

Cn sin

(
(2n− 1)π

2L
x

)
e
−
(

(2n−1)π
2L

)2
t

(If you are curious on how you would find those coefficients Cn for a given initial condition, then
check out the last problem on last week’s worksheet on Fourier series.)

Answer to Question 3. (a) First we assume that u(x, y, t) = X(x)Y (y)T (t). Plugging this into
the PDE,

α2
(
X ′′Y T +XY ′′T

)
= XY T ′

Dividng both side by α2XY T , we get

X ′′

X
+
Y ′′

Y
=

T ′

α2T

Since the left hand side depends only on the x and y while the right hand side depends only on t,
both sides must be equal to a constant, which we will call −λ:

X ′′

X
+
Y ′′

Y
=

T ′

α2T
= −λ

Which we can use to solve for the ODE for T (t):

T ′ + α2λT = 0

We also get that
X ′′

X
+
Y ′′

Y
= −λ

Rearranging so that all the x terms are on the left hand side, and all the y terms are on the right
hand side,

X ′′

X
= −λ− Y ′′

Y

Both sides must be equal to the same constant, which we will call −µ:

X ′′

X
= −λ− Y ′′

Y
= −µ

which we can use to get the ODE for X(x):

X ′′ + µX = 0

and the ODE for Y (y):

Y ′′ + (λ− µ)Y = 0

(Note: there are many different acceptable answers here in terms of whether to use λ, −λ, etc. The
ODEs will look slightly different, but the end results will be the same).

(b) Plugging in u(r, θ, t) = R(r)Θ(θ)T (t), and then separating variables

α2

(
R′′ΘT +

R′ΘT

r
+
RΘ′′T

r2

)
= RΘT ′

R′′

R
+
R′

rR
+

Θ′′

r2Θ
=

T ′

α2T
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Since the left hand side depends only on r and θ, while the right hand side depends only on t, both
sides must equal the same constant −λ,

R′′

R
+
R′

rR
+

Θ′′

r2Θ
=

T ′

α2T
= −λ

This gives us the ODE for T (t):

T ′ + α2λ2T = 0

Leaving us with

R′′

R
+
R′

rR
+

Θ′′

r2Θ
= −λ

Separating the r and θ components,

R′′

R
+
R′

rR
+ λ =

−Θ′′

r2Θ
r2R′′

R
+
rR′

R
+ λr2 =

−Θ′′

Θ
= µ

for some constant µ. This gives us the ODE for Θ(θ):

Θ′′ + µΘ = 0

and the ODE for R(r):

r2R′′ + rR′′ + (λr2 − µ)R = 0

(Again, there are many different ways of writing this answer.)

Answer to Question 4. (a) If we take the derivative of E, then we get the derivative (with
respect to t) of an integral (with respect to x):

dE

dt
=

d

dt

∫ L

0
u(x, t)dx

Since this derivative and integral are with respect to different variables x and t, we can actually
interchange them (a more general form of this is known as Leibniz’s formula):

dE

dt
=

∫ L

0

∂

∂t
u(x, t)dx

Since u is a solution to the heat equation ut = α2uxx, we can then replace the ut in our integrand:

dE

dt
= α2

∫ L

0

∂2

∂x2
u(x, t)dx

By the fundamental theorem of calculus, we can integrate uxx by just evaluating ux at the endpoints
of the integral:

dE

dt
= α2

[
ux(x, t)

]L
0

= α2ux(L, t)− α2ux(0, t)
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If the metal rod is insulated, then both ux terms are zero:

dE

dt
= 0− 0 = 0

and therefore E(t) is constant.

(b) By the same argument as part (a) ,

dE

dt
= α2ux(L, t)− α2ux(0, t)

and if the ends are connected, both of these terms cancel out, leaving:

dE

dt
= 0 =⇒ E(t) is constant

Answer to Question 5. If we expand v(x, t+ ∆t) as a Taylor series, we get:

v(x, t+ ∆t) = v +
∂v

∂t
∆t+O(∆t2)

(in case you haven’t seen it before, O is what’s called big-O notation, and it means terms of order
∆t2 or greater, since they will end up disappearing in the limit.)
Similarly, expanding v(x±∆x, t), we get:

v(x+ ∆x) = v +
∂v

∂x
∆x+

1

2

∂2v

∂x2
(∆x)2 +O(∆x3)

v(x−∆x) = v − ∂v

∂x
∆x+

1

2

∂2v

∂x2
(∆x)2 +O(∆x3)

Plugging this all into the formula above and cancelling things out,

v(x, t+ ∆t) =
1

2
v(x+ ∆x, t) +

1

2
v(x−∆x, t)

v +
∂v

∂t
∆t+O(∆t2) =

1

2

[
v +

∂v

∂x
∆x+

1

2

∂2v

∂x2
(∆x)2 + v − ∂v

∂x
∆x+

1

2

∂2v

∂x2
(∆x)2

]
+O(∆x3)

v +
∂v

∂t
∆t+O(∆t2) = v +

1

2

∂2v

∂x2
(∆x)2 +O(∆x3)

∂v

∂t
∆t+O(∆t2) =

1

2

∂2v

∂x2
(∆x)2 +O(∆x3)

∂v

∂t
+O(∆t) =

1

2

∂2v

∂x2

(∆x)2

∆t
+O

(
∆x3

∆t

)

Then, taking the limit as ∆t→ 0 and (∆x)2

∆t → 1, we are left with:

∂v

∂t
=

1

2

∂2v

∂x2

so v(x, t) is a solution to this heat equation.
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