
Math 2930 Worksheet
Euler Equations
Boundary Value Problems

Week 10

March 29th, 2019

Question 1. Find the eigenvalues and eigenfunctions of:

y′′ + λy = 0, y′(0) = y′(π) = 0



Question 2. Find the solution of:

y′′ + 3y = cos(x), y′(0) = y′(π) = 0

Question 3. Find the general solution of:

x2y′′ + 6xy′ + 6y = 0
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Question 4. Find the eigenvalues and eigenfunctions of:

y′′ + 4y′ + 4λy = 0, y(0) = y(1) = 0
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Question 5. Find the general solution of:

x2
d2y

dx2
+ 4x

dy

dx
+ 2y = x5
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Question 6. (a) Find the general solution of:

x2y′′ + xy′ + λy = 0

You may assume that λ > 0.

(b) Find the eigenvalues and eigenfunctions when y(1) = y(2) = 0.
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Question 7. Find all values of β for which all solutions of

x2y′′ + βy = 0

approach zero as x→ 0.
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Answer to Question 1. Given the equation y′′ + λy = 0, we first try to solve for the roots using
the characteristic polynomial:

y′′ + λy = 0

r2 + λ = 0

r = ±
√
−λ

And we notice that we get very different behavior depending upon the sign of λ. To be thorough,
we have to check the three following cases.

Case 1: λ < 0
To make the ensuing algebra easier, let’s define a new variable ω so that

λ = −ω2, ω > 0

Then the roots of the characteristic polynomial are:

r = ±
√
−λ = ±

√
−(−ω2) = ±ω

The corresponding general solution is:

y(x) = C1e
ωx + C2e

−ωx

Now we want to plug in the boundary conditions. First, we take the derivative

y′(x) = ωC1e
ωx − ωC2e

−ωx

Plugging in the first boundary condition of y′(0) = 0, we get that

y′(0) = ωC1 − ωC2 = 0

C1 = C2

(remember that we defined ω > 0 earlier)
Plugging in the second boundary condition y′(π) = 0, we get that

y′(π) = ωC1e
ωπ − ωC2e

−ωπ = 0

Using that C1 = C2 from the other equation,

ωC1

(
eωπ − e−ωπ

)
= 0

Since ω > 0, it follows that eωπ > e−ωπ, and so the only way this can hold is if C1 = 0.
But in this case, we have that C1 = C2 = 0, which is just the trivial solution y = 0. While y = 0
is a solution of the BVP, it’s not a useful one.

Since there are no non-trivial solutions for λ < 0, we would say that there are no eigenvalues for
λ < 0.
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Case 2: λ = 0
In this case, we have repeated roots:

r = ±
√
−λ = 0, 0

So the corresponding general solution is

y(x) = C1 + C2x

We of course get that y′ = C2, and so our two boundary conditions tell us that:

y′(0) = C2 = 0

y′(π) = C2 = 0

but place no restrictions on C1.
Therefore λ = 0 is an eigenvalue, with corresponding solution y = C, where C is any constant.
Since eigenfunctions are only defined up to a constant, we will not bother writing the C and say
that we have:

Eigenvalue: λ0 = 0

Eigenfunction: y0 = 1

Case 3: λ > 0
For this case, we will again define ω so that

λ = ω2, ω > 0

Now the roots to our characteristic equation are:

r = ±
√
−λ = ±

√
−ω2 = ±ωi

and the corresponding general solution is:

y(x) = C1 cos(ωx) + C2 sin(ωx)

Taking the derivative,
y′(x) = −ωC1 sin(ωx) + ωC2 cos(ωx)

Plugging in the first boundary condition y′(0) = 0, we get

y′(0) = ωC2 = 0

And since we defined ω to be nonzero, we get that C2 = 0.
Plugging in the second boundary condition y′(π) = 0, and using that C2 = 0, we get

−ωC1 sin(ωπ) = 0

We defined ω to be nonzero, and C1 = 0 would lead to the trivial solution y = 0. So the only way
to get a nontrivial solution is if:

sin(ωπ) = 0

ωπ = nπ, n = 1, 2, 3, . . .

ω = n, n = 1, 2, 3, . . .

λ = n2, n = 1, 2, 3, . . .
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Therefore we have the following eigenvalues and eigenfunctions:

Eigenvalues: λn = n2

Eigenfunctions: yn = cos(nx)

for n = 1, 2,3, . . .

Answer to Question 2.
This is a non-homogeneous problem, so first let’s find the complementary solution yc by using the
roots of the characteristic polynomial:

y′′ + 3y = 0

r2 + 3 = 0

r2 = −3

r = ±
√

3i

It follows that the complementary solution is:

yc(x) = C1 cos(
√

3x) + C2 sin(
√

3x)

For the particular solution Y , we could use variation of parameters, but I’m going to use the method
of undetermined coefficients and guess a particular solution of the form:

Y = A cos(x)

(Note: In general, we would also want to include a B sin(x) term whenever we have an A cos(x)
term. For this problem, however, since we only have even derivatives we actually won’t need
the sin(x) term. But with undetermined coefficients, it never hurts to include more terms than
necessary, it just might make keeping track of all of the terms more tedious.)

Taking derivatives,

Y ′ = −A sin(x)

Y ′′ = −A cos(x)

Plugging this into the original equation,

Y ′′ + 3Y = cos(x)

−A cos(x) + 3(A cos(x)) = cos(x)

2A cos(x) = cos(x)

2A = 1

A =
1

2

So the particular solution Y is

Y (x) =
1

2
cos(x)

and the general solution y is

y(x) = yc + Y = C1 cos(
√

3x) + C2 sin(
√

3x) +
1

2
cos(x)
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Now that we have the general solution, we can start plugging in the boundary conditions.
Taking derivatives,

y′(x) = −
√

3C1 sin(
√

3x) +
√

3C2 cos(
√

3x)− 1

2
sin(x)

Plugging in the first boundary condition of y′(0) = 0, we get that

y′(0) = 0 +
√

3C2 − 0 = 0

C2 = 0

Plugging in the second boundary condition y′(π) = 0 (and using that C2 = 0),

y′(π) = −
√

3C1 sin(
√

3π)− 1

2
sin(π) = 0

−
√

3C1 sin(
√

3π) = 0

And since sin(
√

3π) 6= 0, the only way this can be true is if

C1 = 0

So the solution to this boundary value problem is:

y =
1

2
cos(x)

Answer to Question 3.
Since this is an Euler equation, instead of looking for solutions of the form y = erx, we’re going to
look for solutions of the form y = xr.
Taking derivatives,

y = xr

y′ = rxr−1

y′′ = r(r − 1)xr−2

Plugging this back into the equation,

x2y′′ + 6xy′ + 6y = 0

x2
(
r(r − 1)xr−2

)
+ 6x

(
rxr−1

)
+ 6 (xr) = 0(

r2 + 5r + 6
)
xr = 0

Since we want this to hold for all values of x, our characteristic polynomial will be:

r2 + 5r + 6 = 0

which we can factor as:

(r + 3)(r + 2) = 0

r = −3,− 2
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So the general solution is:
y = C1x

−2 + C2x
−3 =

or alternatively,

y =
C1

x2
+
C2

x3

Answer to Question 4.
First, looking for the roots of the characteristic polynomial,

y′′ + 4y′ + 4λy = 0

r2 + 4r + 4λ = 0

Using the quadratic formula,

r =
−4±

√
16− 16λ

2

which simplifies to:
r = −2± 2

√
1− λ

Again, we will have to consider three different cases depending upon the sign of the term inside the
square root.

Case 1: λ < 1
Let λ = 1− ω2, ω > 0 Then we can write the roots as:

r = −2±
√

1− (1− ω2) = −2± ω

and the corresponding general solution is

y(x) = C1e
(−2+2ω)x + C2e

(−2−2ω)x

Now, plugging in the first boundary condition y(0) = 0,

y(0) = C1 + C2 = 0

C2 = −C1

Which we can use with the second boundary condition y(1) = 0 to get

C1e
−2+2ω − C1e

−2−2ω = 0

C1

(
e2ω − e−2ω

)
= 0

Since we have defined ω > 0, it follows that e2ω > e−2ω, so the term inside the parentheses is never
zero. Thus the only way of matching the boundary conditions is to have C1 = C2 = 0, which just
gives the trivial solution y = 0.

So there are no eigenvalues with λ < 1.

Case 2: λ = 1
In this case, we have repeated roots, since

r = −2±
√

1− λ = −2± 0 = −2, −2
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So the general solution is
y = C1e

−2x + C2xe
−2x

Plugging in the boundary conditions,

y(0) = C1 = 0

y(1) = C1e
−2 + C2e

−2 = 0

which leads to C1 = C2 = 0, which gives the trivial solution.

Case 3: λ > 1
Now let λ = 1 + ω2, with ω > 0.
Then the roots of our characteristic equation become:

r = −2±
√

1− λ = −2±
√

1− (1 + ω2)

r = −2± 2ωi

So the general solution is

y = C1e
−2x cos(2ωx) + C2e

−2x sin(2ωx)

Plugging in the first boundary condition y(0) = 0, we get

y(0) = C1 = 0

Using this together with the second boundary condition y(1) = 0, we get

y(1) = C2e
−2 sin(2ω) = 0

If C2 = 0, then we just get the trivial solution y = 0.
So the only way of getting nontrivial solutions is if:

sin(2ω) = 0

2ω = nπ, n = 1, 2, 3, . . .

ω =
nπ

2
, n = 1, 2, 3, . . .

Therefore we have the following eigenvalues and eigenfunctions:

Eigenvalues: λn = 1 +
(nπ

2

)2
Eigenfunctions: yn = e−2x sin(nπx)

for n = 1, 2,3, . . .
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Answer to Question 5.
First, let’s look for complementary solutions with the guess y = xr. Taking derivatives,

y = xr

y′ = rxr−1

y′′ = r(r − 1)xr−2

Plugging this into the original equation, and finding the roots of the characteristic polynomial,

x2
(
r(r − 1)xr−2

)
+ 4x

(
rxr−1

)
= 2 (xr) = 0(

r2 + 3r + 2
)
xr = 0(

r2 + 3r + 2
)

= 0

(r + 1)(r + 2) = 0

r = −1, −2

So the complementary solution is

yc(x) =
C1

x
+
C2

x2

For the particular solution, we could use variation of parameters, but instead I’m going to use the
method of undetermined coefficients. We’ll look for particular solutions Y of the form:

Y (x) = Ax5

Taking derivatives,

Y ′ = 5Ax4

Y ′′ = 20Ax3

Plugging this into the original equation,

x2Y ′′ + 4xY ′ + 2Y = x5

x2
(
20Ax3

)
+ 4x

(
5Ax4

)
+ 2

(
Ax5

)
= x5

42Ax5 = x5

42A = 1

A =
1

42

So the particular solution is

Y =
1

42
x5

and the general solution y = yc + Y is:

y(x) =
C1

x
+
C2

x2
+

1

42
x5
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Answer to Question 6.
(a) Since this is an Euler equation, we’ll look for solutions of the form y = xr. Taking derivatives,

y = xr

y′ = rxr−1

y′′ = r(r − 1)xr−2

Plugging this into the original equation and solving for the roots of the characteristic equation,

x2
(
r(r − 1)xr−2

)
+ x

(
rxr−1

)
+ λ (xr) = 0(

r2 + λ
)
xr = 0

r2 + λ = 0

r = ±
√
λi

So the general solution is of the form

y = C1x
√
λi + C2x

−
√
λi

which we can simplify as:

y = C1x
√
λi + C2x

−
√
λi

y = C1e
i
√
λ ln(x) + C2e

−i
√
λ ln(x)

and then using Euler’s formula,

y = C1 cos
(√

λ ln(x)
)

+ C2 sin
(√

λ ln(x)
)

(b) Plugging in the first boundary condition of y(1) = 0,

y(1) = C1 cos
(√

λ ln(1)
)

+ C2 sin
(√

λ ln(1)
)

= 0

y(1) = C1 cos(0) + C2 sin(0) = 0

y(1) = C1 = 0

Using this with the second boundary condition of y(2) = 0,

y(2) = C2 sin
(√

λ ln(2)
)

= 0

If C2 = 0, we would just have the trivial solution y = 0.
So to get nontrivial solutions, we need:

sin
(√

λ ln(2)
)

= 0
√
λ ln(2) = nπ, n = 1, 2, 3, . . .
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Therefore the eigenvalues and eigenfunctions are:

Eigenvalues: λn = 1 +

(
nπ

ln(2)

)2

Eigenfunctions: yn = sin

(
nπ ln(x)

ln(2)

)
for n = 1, 2,3, . . .

Answer to Question 7. Since this is an Euler equation, we’ll look for solutions of the form y = xr

Taking derivatives,

y = xr

y′ = rxr−1

y′′ = r(r − 1)xr−2

Plugging this into the original equation,

x2y′′ + βy = 0

x2
(
r(r − 1)xr−2

)
+ β (xr) = 0(

r2 − r + β
)
xr = 0

r2 − r + β = 0

Using the quadratic formula, our roots are:

r =
1±
√

1− 4β

2

To guarantee that all solutions approach zero as x → 0, we will need to make sure that the real
part of both roots is positive.

If the roots are complex, then they will have real part 1/2, and so the solutions will approach zero
as x→ 0.

If the roots are both real, then we want to make sure that:

1−
√

1− 4β > 0

1 >
√

1− 4β

1 > 1− 4β

β > 0
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