
Math 2930 Worksheet
Higher Order and Euler Equations

Week 9

October 19th, 2017

Question 1. (*) Find the general solution of the 4th order differential equation

y(4) + 2y ′′ + y = 0

Question 2. (*) Consider the following two-point boundary value problem for y(x):

y ′′ +
π2

L2
y = p

y ′(0) = 0

y(L) = 0

where p is a given constant.
(a) Solve the boundary value problem.
(b) Neatly sketch the solution on 0 ≤ x ≤ L. On your sketch label the y value at each of the end
points.



Question 3. (*) Find the general solution of

x2
d2y

dx2
+ 4x

dy

dx
+ 2y = x5
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Question 4. Suppose there are two massesm1 andm2. m1 is suspended by a spring hanging from
the ceiling, andm2 is suspended by another spring hanging fromm2 as in the picture below. Their
positions u1 and u2 satisfy the coupled system of equations:

u ′′
1 + 5u1 = 2u2, u ′′

2 + 2u2 = 2u1 (1)

(a) Solve the first equation of (1) for u2 and substitute into the second equation, thereby obtaining
the following fourth-order equation for u1:

u
(4)
1 + 7u ′′

1 + 6u1 = 0 (2)

Find the general solution of equation (2)

(b) Suppose that the initial conditions are:

u1(0) = 1, u ′
1(0) = 0, u2(0) = 2, u ′

2(0) = 0

Use these initial conditions and the first equation of (1) to obtain values for u ′′
1 (0) and u ′′′

1 (0).

(c) Show that the solution of Eq. (2) that satisfies the initial conditions you found in part (b) is

u1(t) = cos(t)
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Question 5. Consider a horizontal metal beam of length L subject to a vertical load f(x) per unit
length. The resulting vertical displacement in the beam y(x) satisfies a differential equation of the
form

A
d4y

dx4
= f(x)

where A is a constant related to Young’s modulus and the moment of inertia of the beam. (See
picture below).
Suppose that f(x) is a constant k:

A
d4y

dx4
= k

For each of the boundary conditions given below, solve for the displacement y(x):
(a) Simply supported at both ends:

y(0) = y ′′(0) = y(L) = y ′′(L) = 0

(b) Clamped at both ends:
y(0) = y ′(0) = y(L) = y ′(L) = 0

(c) Clamped at x = 0, free at x = L:

y(0) = y ′(0) = y ′′(L) = y ′′′(L) = 0
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Answer to Question 1.
(a)
Finding the roots of the characteristic polynomial,

r4 + 2r2 + 1 = 0

(r2 + 1)(r2 + 1) = 0

r = ±i, ±i (repeated)

The corresponding general solution is then

y = c1 cos(t) + c2 sin(t) + c3t cos(t) + c4t sin(t)

Answer to Question 2. (a) First, we find the solution of the homogenous equation:

y ′′ +
π2

L2
y = 0

Finding the roots of the characteristic polynomial,

r2 +
π2

L2
= 0

r2 = −
π2

L2

r = ±
√

−
π2

L2
= ±π

L
i

So the homogenous solution is:

yh(x) = c1 cos
(π
L
x
)
+ c1 sin

(π
L
x
)

Now for the particular solution. For the method of undetermined coefficients, we guess something
in the form of the right hand side. Since the right hand side is just a constant, we guess a particular
of the form

Y(x) = A

plugging this into the equation and solving for A,

0+
π2

L2
A = p

A =
pL2

π2

So the general solution is

y(x) = yh(x) + Y(x) = c1 cos
(π
L
x
)
+ c1 sin

(π
L
x
)
+
pL2

π2

Now that we have the general solution, we plug in the boundary values to try and find c1 and c2.
(Note: a common mistake is to try and find c1 and c2 before finding the particular solution, but
this doesn’t work. You need to find the particular solution first, and then find c1 and c2).
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So plugging in the boundary values,

y ′(0) = −
π

L
c1 sin(0) +

π

L
c2 cos(0) = 0

y ′(0) =
π

L
c2 = 0

c2 = 0

y(L) = c1 cos
(π
L
L
)
+ c1 sin

(π
L
L
)
+
pL2

π2
= 0

y(L) = c1 cos(π) + c2 sin(π) +
pL2

π2
= 0

y(L) = −c1 +
pL2

π2
= 0

c1 =
pL2

π2

So the solution to this boundary value problem is

y(x) =
pL2

π2

[
cos
(πx
L

)
+ 1
]

(b) A graph of the solution is here:

The endpoints are denoted by the red points in the circle above. The first is at (0, 2pL2/π2) and the
second is at (L, 0).
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Answer to Question 3. This equation is what is known as an Euler equation, and since the right-
hand side is nonzero, this is a non-homogenous Euler equation.
So we will have to find both a homogenous and particular solution of the equation.
For the homogenous solution, we are solving:

x2
d2y

dx2
+ 4x

dy

dx
+ 2y = 0

Because this is an Euler equation, we guess a solution of the form y = xr. Calculating derivatives,

y = xr

dy

dx
= rxr−1

d2y

dx2
= r(r− 1)xr−2

Plugging this into the original equation, and solving for r,

x2r(r− 1)xr−2 + 4xrxr−1 + 2xr = 0

r(r− 1)xr + 4rxr + 2xr = 0[
r(r− 1) + 4r+ 2

]
xr = 0

r(r− 1) + 4r+ 2 = 0

r2 + 3r+ 2 = 0

(r+ 1)(r+ 2) = 0

r = −1, −2

So the homogenous solution is
yh(x) = c1x

−1 + c2x
−2

For the particular solution, we guess something in the form of the right hand side, so we’ll guess

Y(x) = Ax5

(Note: in the case of constant coefficients, we would usually need to add on a bunch of lower order
terms, i.e Bx4+Cx3+ ... But for Euler equations, this is unnecessary, since we always get the same
power of x back.)
The derivatives are

Y(x) = Ax5

Y ′(x) = 5Ax4

Y ′′(x) = 20Ax3

Plugging this in,

x2Y ′′ + 4xY ′ + 2Y = x5

x2(20Ax3) + 4x(5Ax4) + 2(Ax5) = x5[
20A+ 20A+ 2

]
x5 = x5

42A = 1

A =
1

42
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So the particular solution is

Y(x) =
1

42
x5

and the corresponding general solution is

y(x) = yh(x) + Y(x) = c1
1

x
+ c2

1

x2
+
1

42
x5

Answer to Question 4. (a)
Solving the first equation for u2,

u2 =
u ′′
1 + 5u1
2

then plugging this into the second equation,(
u ′′
1 + 5u1
2

) ′′
+ 2

(
u ′′
1 + 5u1
2

)
= 2u1

1

2
u(4) +

5

2
u ′′
1 + u ′′

1 + 5u1 = 2u1

u(4) + (5+ 2)u ′′
1 + 10u1 = 4u1

u(4) + 7u ′′
1 + 6u1 = 0

The general solution of this equation can be found by using the ansatz u = ert, giving us the
characteristic polynomial:

r(4) + 7r2 + 6 = 0

To then find the roots, we factor as:

(r2 + 1)(r2 + 6) = 0

r = ±i, ±
√
6i

giving us a general solution of:

u1(t) = C1 cos(t) + C2 sin(t) + C3 cos(
√
6t) + C4 sin(

√
6t)

(b) We’ll have to translate the initial conditions on u2 into initial conditions on u1.
We can do that with the original equations relating u1 and u2 as follows:

u ′′
1 (t) + 5u1(t) = 2u2(t)

u ′′
1 (0) + 5u1(0) = 2u2(0)

u ′′
1 (0) + 5(1) = 2(2)

u ′′
1 (0) = −1

and

u ′′
1 (t) + 5u1(t) = 2u2(t)

u ′′′
1 (t) + 5u ′

1(t) = 2u
′
2(t)

u ′′′
1 (0) + 5u ′

1(0) = 2u
′
2(0)

u ′′′
1 (0) + 5(0) = 2(0)

u ′′′
1 (0) = 0
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(c) So we have the general solution

u1(t) = C1 cos(t) + C2 sin(t) + C3 cos(
√
6t) + C4 sin(

√
6t)

with initial conditions:

u1(0) = 1, u ′
1(0) = 0, u ′′

1 (0) = −1, u ′′′
1 (0) = 0

Plugging these in, we get the following equations:

u1(0) = C1 + 0+ C3 + 0 = C1 + C3 = 1

u ′
1(0) = 0+ C2 + 0+

√
6C4 = C2 +

√
6C4 = 0

u ′′
1 (0) = −C1 + 0− 6C3 + 0 = −C1 − 6C3 = −1

u ′′′
1 (0) = 0− C2 + 0− 6

√
6C4 = −C2 − 6

√
6C4 = 0

The second and fourth equations give us that C2 = C4 = 0.
The first and third equations are then:

C1 + C3 = 1

−C1 − 6C3 = −1

Adding the first equation to the second gives

−5C3 = 0

C3 = 0

which results in C1 = 1. Overall, the constants are:

C1 = 1, C2 = 0, C3 = 0, C4 = 0

Therefore the specific solution to this IVP is:

u1(t) = cos(t)

(d) To find u2(t), we plug it into our original equation, and get:

u ′′
1 (t) + 5u1(t) = 2u2(t)

(cos(t)) ′′ + 5 cos(t) = 2u2(t)
− cos(t) + 5 cos(t) = 2u2(t)

u2(t) = 2 cos(t)
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Answer to Question 5. Here we have a non-homogenous 4th order equation:

Ay(4) = k

We could solve this by using the characteristic polynomial, then find a particular solution, etc, but
there’s a much easier way: just integrate both sides four times.

y(4)(x) =
k

A

y ′′′(x) =
k

A
x+ c1

y ′′(x) =
k

2A
x2 + c1x+ c2

y ′(x) =
k

6A
x3 +

c1
2
x2 + c2x+ c3

y(x) =
k

24A
x4 +

c1
6
x3 +

c2
2
x2 + c3x+ c4

Of course this wouldn’t work for most equations, since at some point we would get a term of∫
y(x)dx, which we can’t figure out since we don’t know what y(x) is. But in this case, since we

only have the one term, it does work out.
(Note: often we would just use c1 instead of c1/6, but writing it this way means I can go ahead and
use the derivatives of y I wrote up above for applying the boundary conditions. If I was changing
what c1, c2, etc meant from line to line then I wouldn’t be able to do that.)
(a) Plugging in the boundary conditions:

y(0) = y ′′(0) = y(L) = y ′′(L) = 0

we get the following system of 4 equations for (c1, c2, c3, c4):

y(0) = c4 = 0

y ′′(0) = c2 = 0

y(L) =
k

24A
L4 +

c1
6
L3 +

c2
2
L2 + c3L+ c4 = 0

y ′′(L) =
k

2A
L2 + c1L+ c2 = 0

Putting c2 = c4 = 0 into the last two equations gives

k

24A
L4 +

c1
6
L3 + c3L = 0

k

2A
L2 + c1L = 0

Solving the second equation for c1,

c1 = −
kL

2A
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plugging that in to solve for c3,

k

24A
L4 +−

kL

12A
L3 + c3L = 0

c3L =
kL4

24A

c3 =
kL3

24A

so now that we have c1, c2, c3, c4, we plug these in to get the solution:

y(x) =
k

24A
x4 +

−kL

12A
x3 +

kL3

24A
x

which we can rewrite more simply as:

y(x) =
k

24A

[
x4 − 2Lx3 + L3x

]

(b) Plugging in the boundary conditions:

y(0) = y ′(0) = y(L) = y ′(L) = 0

we get the following system of 4 equations for (c1, c2, c3, c4):

y(0) = c4 = 0

y ′(0) = c3 = 0

y(L) =
k

24A
L4 +

c1
6
L3 +

c2
2
L2 + c3L+ c4 = 0

y ′(L) =
k

6A
L3 +

c1
2
L2 + c2L+ c3

Putting c3 = c4 = 0 into the last two equations gives

k

24A
L4 +

c1
6
L3 +

c2
2
L2 = 0

k

6A
L3 +

c1
2
L2 + c2L = 0

this is a linear system of 2 equations in 2 unknowns, its solution is:

c1 =
−2kL

24
, c2 =

kL2

24

putting these back into our original formula, the solution is:

y(x) =
k

24A
x4 +

−2kL

24A
x3 +

kL2

24A
x2
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which we can rewrite more simply as:

y(x) =
k

24A

[
x4 − 2Lx3 + L2x2

]

(c) Plugging in the boundary conditions:

y(0) = y ′(0) = y ′′(L) = y ′′′(L) = 0

we get the following system of 4 equations for (c1, c2, c3, c4):

y(0) = c4 = 0

y ′(0) = c3 = 0

y ′′(L) =
k

2A
L2 + c1L+ c2 = 0

y ′′′(L) =
k

A
L+ c1 = 0

Solving the last equation for c1,

c1 = −
kL

A

Plugging it in to find c2,

kL2

2A
−
kL2

A
+ c2 = 0

c2 =
kL2

2A

plugging in c1, c2, c3, and c4, we get a solution of

y(x) =
k

24A
x4 +

−kL

6A
x3 +

kL2

4A
x2

which can be rewritten more simply as

k

24A

[
x4 − 4Lx3 + 6L2x2

]
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