Math 2930 Worksheet Week 8
Forced Vibrations, Higher-Order ODEs October 12th, 2017

Question 1.
An undamped forced oscillator is described by the equation:

u” + 2’ 4+ u = Fysin(wt), y(0) = q, y'(0)=0b

where A > 0.

(a) Find the steady state solution of this equation.

(b) Should the steady state solution depend on the initial conditions? Why or why not?

(c) For A << 1, what value of w maximizes the amplitude of the steady state solution?

(d) What is the amplitude of the steady state solution in the limit as w — 0?



Question 2. The goal of this question is to walk you through how to solve an oscillator with a
piecewise forcing function, such as:

Fot, 0<t<m
wW+u=F1t) =< F2n—t), m<t<2m
0, 2n<t

with initial conditions
u(0) =0, u'(0) =0

(a) First, solve on the interval [0, 71]. Here, find the solution u of:

u” 4+ u = Fot, u(0) =0, u’(0) =0

(b) Plug t = 7t into your answer from (a) to show that

u(m) = Fom, u/(m) = 2F,

(c) Now solve on the interval [, 271]. That means find the solution u of:

u” +u=Fy(2m — 1), u(m) = Fom, u’(m) = 2F,

(d) Plug t = 27t into your answer from (c) to show that

u(2m) =0, u/(2m) = —4F,



(e) Now solve on the interval [271, 00). That means find the solution u of:

u +u=0, u(2m) = 0, u'(2m) = —4F,

(f)

Now we can string our solutions together to get the solution to the full problem. Write:

w(t), 0<t<m
u(t) =< uw(t), n<t<22n
uz(t), 2m<t

where u; is your solution to part (a) , u, is your solution to part (c) , and u3 is your solution to part
(e) . This solves the original equation with the piecewise forcing function.



Suppose there are two masses m; and m;. m; is suspended by a spring hanging from the ceiling,
and m; is suspended by another spring hanging from m,. Their positions u; and u, satisfy the
coupled system of equations:

w4+ 51y = 2uy, w) + 2wy = 21y (1)

(a) Solve the first equation of (1) for u, and substitute into the second equation, thereby obtaining
the following fourth-order equation for u;:

w4 7uf + 61y =0 )

Find the general solution of equation (2)

(b) Suppose that the initial conditions are:
w0 =1,  w(0)=0, w(0)=2  u0)=0

Use these initial conditions and the first equation of (1) to obtain values for u{'(0) and u{”(0).

(c) Show that the solution of Equation (2) that satisfies the initial conditions you found in part (b)
is
u;(t) = cos(t)

(d) Show that the corresponding solution u; is u;(t) = 2 cos(t).



Answer to Question 1. (a) To find the steady state solution, we want to find a particular solution
to
u” + A 4+ u = Fysin(wt)

We will do this using the method of undetermined coefficients. This means we guess a particular
solution of the form
U(t) = A cos(wt) + Bsin(wt)

and then calculate its derivatives:
U’(t) = —Awsin(wt) + Bw cos(wt)
u”(t) = —Aw? cos(wt) — Bw? sin(wt)
Plugging this into the left hand side of the original equation,
Uu” + AU’ 4+ U = Fysin(wt)

[—Aw? cos(wt) — Bw? sin(wt)] + A[~Aw sin(wt) + Bw cos(wt)] + [A cos(wt) + Bsin(wt)] = Fysin(wt)
[~Bw? — AAw + B] sin(wt) + [~Aw? + BAw + A] cos(wt) = Fysin(wt)

Setting like terms equal, we get two equations for A and B:

—Bw?—AAw+B=F
—Aw? +BAw+A =0
Solving the second equation for B,

Alw?—1)

B =
Aw

Plugging this into the first equation,

02 (2 — 1) — N2 2
A( w (w*—1) —Aw*+ (w ”>:F0
Aw
A— —Fo)\w
(w? —1)2 + Nw?
B Alw?—1)
Aw
B— —Fo(w? —1)
(=12 + Mw?
So the steady state solution is:
—F07\w —Fo(wz — 1)

ut) = cos(wt) + sin(wt)

(w2 —1)2+AM2w? (w2 —1)2+AMw?

(b) The steady state does not depend on the initial conditions, since the steady state solution is the
particular solution to this non-homogenous problem. The initial conditions will only affect the
coefficients of the homogenous solution, which is not part of the steady state solution.



(c) The amplitude (squared) of the steady state solution is:
R? = A% 4+ B?
2 —FoAw P (. Folw!-1) ?
(w2 —1)2 + AMw? (w? —1)2 + AN2w?
2 _ F2[(w? —1)? + A2w?]
[(w2—1)2+ }\zwz]z

B
(w? —1)2 4+ Nw?
R= fo

\/(wz —1)2 + Nw?

For A << 1, i.e. very small values of A, the A w? term becomes arbitrarily small (but nonzero), so
this expression is maximized at w = 1.

Note that we're saying A << 1 to mean that A is close to but not exactly zero. If A were exactly
zero, then we would not have a damped equation, and the homogenous solution would no longer
disappear as t — oo, so we could no longer look only at the particular solution.

(d) As w — 0, we see from our formula above that

Fo

=0  _F
0—1210

Again, we have to say w — 0 rather than w = 0 here. If w were exactly zero, then we would have
a free vibration problem, whose steady state solution is zero.
Answer to Question 2.
First off, in all of the subparts, the homogenous solution will always be
up(t) = Cy cos(t) + Cysin(t)

it’s only the particular solution that changes.

(a) For the particular solution, we will use the method of undetermined coefficients. We guess that
u=At
Then plugging it into the original equation,
U”4+U=0+At=Fot
So A = Fy and our general solution to this problem is:
u(t) = un(t) + U(t) = Cy cos(t) + Cysin(t) + Fot
Plugging in the initial values,

u(0) = Cycos(0) + C2sin(0) + Fo(0) = C; =0
u’(0) = —Cysin(0) + C; cos(0)+Fp=Co+Fy=0



So this gives C; = 0, and C, = —F, giving us a specific solution of:

’u(t) = —Fpsin(t) + Fot‘

(b) Plugging in t = 7, we get

’u(n) = —Fpsin(m) + Fort = Fon‘

and
u’(t) = —Fgcos(t) + Fy

u/(m) = —Fg cos(m) + Fy = 2F

(c) Here, for the particular solution, we guess a solution of the form

U(t) =At+B
Plugging this in,
U +U=0+(At+B)=Fy(2mr—1)
At + B = —Fot + 27tFy
from which we see A = —F; and B = 27tFy. That means our general solution is:

u(t) = up(t) + U(t) = Gy cos(t) + Cysin(t) + Fo(2mr — t)
Plugging in the initial conditions,

u(m) = Cq cos(m) + Cy sin(m) + Fo(2t — 1) = Cq + tFy = 7tFy
u’'(m) = —Cy sin(m) + C; cos(m) — Fg = —C, — Fy = 2Fy

this means that C; = 0 and C; = —3F. So the specific solution to this IVP is:

’u(t) =up(t) + U(t) = —3Fysin(t) + Fo(2m — t) ‘

(d) Plugging in t = 27 into our solution above,

]u(zn) = —3F, sin(27) + Fo (2t — 2m) = 0 \

and
u’(t) = —3Fycos(t) — Fy

u/(2m) = —3Fycos(2m) — Fy = —3Fy — Fo = —4F,

(e) For this part, we want to solve the IVP:

uw +u=0, u(2m) =0, u’(2m) = —4F,



This is a homogenous problem, and the general solution is:
u(t) = Cy cos(t) + Cysin(t)
Plugging in the initial conditions,

u(27) = Cy cos(2m) + Cysin(2t) = C; =0
u/(2m) = —Cy sin(27) + C; cos(27) = C; = —4F,

So this means that the specific solution is:

’u(t) = —4F, sin(t) ‘

Patching all of our solutions together, the solution to the piecewise forcing problem is:

—Fpsin(t) + Fot, 0<t<m
u(t) = ¢ —3Fysin(t) + Fo2n—t), m<t<2m
—4Fq sin(t), 2n<t
Answer to Question 3. (a)
Solving the first equation for u,,
w4 5uy
Uy = f

then plugging this into the second equation,

uf +5ur\” u;’ + 5y
— 2(———] =2
< 7 ) + 3 U

1 5
Eu“) + iu{' +uf +5u = 2wy
u® 4+ (5+2)uf +10u; =4
u® 4 7uf 6wy =0
The general solution of this equation can be found by using the ansatz u = e™, giving us the
characteristic polynomial:
@ 4712 416 =0

To then find the roots, we factor as:
(r2+ 1) +6)=0
r=4i, +V6i

giving us a general solution of:

u;(t) = C; cos(t) + Csin(t) + C3 cos(V6t) + Cu sin(V6t)

(b) We'll have to translate the initial conditions on u; into initial conditions on u;.



We can do that with the original equations relating u; and u; as follows:
2uy(t)
2u,(0)
2( )

( ) 4 5uy(t
( )+ 5uy (0
uy'(0) +5(1

(0

)
)
)
uy'(0) =

and

(c) So we have the general solution
u;(t) = C; cos(t) + Cy sin(t) + C3 cos(V6t) + C4 sin(V6t)

with initial conditions:

w0)=C;+0+C3+0=C;+C3=1
(0)=04+Cr+04+V6Cs=Cr+V6Cs =0

u/(0)=—C1+0—6C3+0=—C; —6C3 =—1
(

The second and fourth equations give us that C; = C4 = 0.
The first and third equations are then:

Ci+C3 =1
—C;—6C3 =—1

Adding the first equation to the second gives

—5C3=0
C;3=0

which results in C; = 1. Overall, the constants are:
C =1, C, =0, C3 =0, Cs4=0

Therefore the specific solution to this IVP is:

‘u1 (t) = cos(t) ‘
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(d) To find uy(t), we plug it into our original equation, and get:

uy'(t) + 5w (t) = 2uy(t)
(cos(t))” + 5 cos(t) = 2u,(t)
—cos(t) +5cos(t) = 2uy(t)

’uz(t) = 2cos(t) ‘
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