
Math 2930 Worksheet
Forced Vibrations, Higher-Order ODEs

Week 8

October 12th, 2017

Question 1.
An undamped forced oscillator is described by the equation:

u ′′ + λu ′ + u = F0 sin(ωt), y(0) = a, y ′(0) = b

where λ > 0.

(a) Find the steady state solution of this equation.

(b) Should the steady state solution depend on the initial conditions? Why or why not?

(c) For λ << 1, what value ofωmaximizes the amplitude of the steady state solution?

(d) What is the amplitude of the steady state solution in the limit asω→ 0?



Question 2. The goal of this question is to walk you through how to solve an oscillator with a
piecewise forcing function, such as:

u ′′ + u = F(t) =


F0t, 0 ≤ t < π
F0(2π− t), π < t ≤ 2π
0, 2π < t

with initial conditions
u(0) = 0, u ′(0) = 0

(a) First, solve on the interval [0, π]. Here, find the solution u of:

u ′′ + u = F0t, u(0) = 0, u ′(0) = 0

(b) Plug t = π into your answer from (a) to show that

u(π) = F0π, u ′(π) = 2F0

(c) Now solve on the interval [π, 2π]. That means find the solution u of:

u ′′ + u = F0(2π− t), u(π) = F0π, u ′(π) = 2F0

(d) Plug t = 2π into your answer from (c) to show that

u(2π) = 0, u ′(2π) = −4F0
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(e) Now solve on the interval [2π,∞). That means find the solution u of:

u ′′ + u = 0, u(2π) = 0, u ′(2π) = −4F0

(f)
Now we can string our solutions together to get the solution to the full problem. Write:

u(t) =


u1(t), 0 ≤ t < π
u2(t), π < t ≤ 2π
u3(t), 2π < t

where u1 is your solution to part (a) , u2 is your solution to part (c) , and u3 is your solution to part
(e) . This solves the original equation with the piecewise forcing function.
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Suppose there are two masses m1 and m2. m1 is suspended by a spring hanging from the ceiling,
and m2 is suspended by another spring hanging from m2. Their positions u1 and u2 satisfy the
coupled system of equations:

u ′′
1 + 5u1 = 2u2, u ′′

2 + 2u2 = 2u1 (1)

(a) Solve the first equation of (1) for u2 and substitute into the second equation, thereby obtaining
the following fourth-order equation for u1:

u
(4)
1 + 7u ′′

1 + 6u1 = 0 (2)

Find the general solution of equation (2)

(b) Suppose that the initial conditions are:

u1(0) = 1, u ′
1(0) = 0, u2(0) = 2, u ′

2(0) = 0

Use these initial conditions and the first equation of (1) to obtain values for u ′′
1 (0) and u ′′′

1 (0).

(c) Show that the solution of Equation (2) that satisfies the initial conditions you found in part (b)
is

u1(t) = cos(t)

(d) Show that the corresponding solution u2 is u2(t) = 2 cos(t).
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Answer to Question 1. (a) To find the steady state solution, we want to find a particular solution
to

u ′′ + λu ′ + u = F0 sin(ωt)

We will do this using the method of undetermined coefficients. This means we guess a particular
solution of the form

U(t) = A cos(ωt) + B sin(ωt)

and then calculate its derivatives:

U ′(t) = −Aω sin(ωt) + Bω cos(ωt)

U ′′(t) = −Aω2 cos(ωt) − Bω2 sin(ωt)

Plugging this into the left hand side of the original equation,

U ′′ + λU ′ +U = F0 sin(ωt)[
−Aω2 cos(ωt) − Bω2 sin(ωt)

]
+ λ
[
−Aω sin(ωt) + Bω cos(ωt)

]
+
[
A cos(ωt) + B sin(ωt)

]
= F0 sin(ωt)[

−Bω2 −Aλω+ B
]

sin(ωt) +
[
−Aω2 + Bλω+A

]
cos(ωt) = F0 sin(ωt)

Setting like terms equal, we get two equations for A and B:

−Bω2 −Aλω+ B = F0

−Aω2 + Bλω+A = 0

Solving the second equation for B,

B =
A(ω2 − 1)

λω

Plugging this into the first equation,

A

(
−ω2(ω2 − 1) − λ2ω2 + (ω2 − 1)

λω

)
= F0

A =
−F0λω

(ω2 − 1)2 + λ2ω2

B =
A(ω2 − 1)

λω

B =
−F0(ω

2 − 1)

(ω2 − 1)2 + λ2ω2

So the steady state solution is:

U(t) =
−F0λω

(ω2 − 1)2 + λ2ω2
cos(ωt) +

−F0(ω
2 − 1)

(ω2 − 1)2 + λ2ω2
sin(ωt)

(b) The steady state does not depend on the initial conditions, since the steady state solution is the
particular solution to this non-homogenous problem. The initial conditions will only affect the
coefficients of the homogenous solution, which is not part of the steady state solution.
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(c) The amplitude (squared) of the steady state solution is:

R2 = A2 + B2

R2 =

(
−F0λω

(ω2 − 1)2 + λ2ω2

)2
+

(
−

F0(ω
2 − 1)

(ω2 − 1)2 + λ2ω2

)2
R2 =

F20
[
(ω2 − 1)2 + λ2ω2

][
(ω2 − 1)2 + λ2ω2

]2
R2 =

F20
(ω2 − 1)2 + λ2ω2

R =
F0√

(ω2 − 1)2 + λ2ω2

For λ << 1, i.e. very small values of λ, the λ2ω2 term becomes arbitrarily small (but nonzero), so
this expression is maximized atω = 1.
Note that we’re saying λ << 1 to mean that λ is close to but not exactly zero. If λ were exactly
zero, then we would not have a damped equation, and the homogenous solution would no longer
disappear as t→ ∞, so we could no longer look only at the particular solution.

(d) Asω→ 0, we see from our formula above that

R =
F0√

(0− 1)2 + 0
= F0

Again, we have to say ω→ 0 rather than ω = 0 here. If ω were exactly zero, then we would have
a free vibration problem, whose steady state solution is zero.

Answer to Question 2.
First off, in all of the subparts, the homogenous solution will always be

uh(t) = C1 cos(t) + C2 sin(t)

it’s only the particular solution that changes.

(a) For the particular solution, we will use the method of undetermined coefficients. We guess that

U = At

Then plugging it into the original equation,

U ′′ +U = 0+At = F0t

So A = F0 and our general solution to this problem is:

u(t) = uh(t) +U(t) = C1 cos(t) + C2 sin(t) + F0t

Plugging in the initial values,

u(0) = C1 cos(0) + C2 sin(0) + F0(0) = C1 = 0
u ′(0) = −C1 sin(0) + C2 cos(0) + F0 = C2 + F0 = 0
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So this gives C1 = 0, and C2 = −F0, giving us a specific solution of:

u(t) = −F0 sin(t) + F0t

(b) Plugging in t = π, we get

u(π) = −F0 sin(π) + F0π = F0π

and
u ′(t) = −F0 cos(t) + F0

u ′(π) = −F0 cos(π) + F0 = 2F0

(c) Here, for the particular solution, we guess a solution of the form

U(t) = At+ B

Plugging this in,

U ′′ +U = 0+ (At+ B) = F0(2π− t)

At+ B = −F0t+ 2πF0

from which we see A = −F0 and B = 2πF0. That means our general solution is:

u(t) = uh(t) +U(t) = C1 cos(t) + C2 sin(t) + F0(2π− t)

Plugging in the initial conditions,

u(π) = C1 cos(π) + C2 sin(π) + F0(2π− π) = C1 + πF0 = πF0

u ′(π) = −C1 sin(π) + C2 cos(π) − F0 = −C2 − F0 = 2F0

this means that C1 = 0 and C2 = −3F0. So the specific solution to this IVP is:

u(t) = uh(t) +U(t) = −3F0 sin(t) + F0(2π− t)

(d) Plugging in t = 2π into our solution above,

u(2π) = −3F0 sin(2π) + F0(2π− 2π) = 0

and
u ′(t) = −3F0 cos(t) − F0

u ′(2π) = −3F0 cos(2π) − F0 = −3F0 − F0 = −4F0

(e) For this part, we want to solve the IVP:

u ′′ + u = 0, u(2π) = 0, u ′(2π) = −4F0
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This is a homogenous problem, and the general solution is:

u(t) = C1 cos(t) + C2 sin(t)

Plugging in the initial conditions,

u(2π) = C1 cos(2π) + C2 sin(2π) = C1 = 0
u ′(2π) = −C1 sin(2π) + C2 cos(2π) = C2 = −4F0

So this means that the specific solution is:

u(t) = −4F0 sin(t)

Patching all of our solutions together, the solution to the piecewise forcing problem is:

u(t) =


−F0 sin(t) + F0t, 0 ≤ t < π
−3F0 sin(t) + F0(2π− t), π < t ≤ 2π
−4F0 sin(t), 2π < t

Answer to Question 3. (a)
Solving the first equation for u2,

u2 =
u ′′
1 + 5u1
2

then plugging this into the second equation,(
u ′′
1 + 5u1
2

) ′′
+ 2

(
u ′′
1 + 5u1
2

)
= 2u1

1

2
u(4) +

5

2
u ′′
1 + u ′′

1 + 5u1 = 2u1

u(4) + (5+ 2)u ′′
1 + 10u1 = 4u1

u(4) + 7u ′′
1 + 6u1 = 0

The general solution of this equation can be found by using the ansatz u = ert, giving us the
characteristic polynomial:

r(4) + 7r2 + 6 = 0

To then find the roots, we factor as:

(r2 + 1)(r2 + 6) = 0

r = ±i, ±
√
6i

giving us a general solution of:

u1(t) = C1 cos(t) + C2 sin(t) + C3 cos(
√
6t) + C4 sin(

√
6t)

(b) We’ll have to translate the initial conditions on u2 into initial conditions on u1.
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We can do that with the original equations relating u1 and u2 as follows:

u ′′
1 (t) + 5u1(t) = 2u2(t)

u ′′
1 (0) + 5u1(0) = 2u2(0)

u ′′
1 (0) + 5(1) = 2(2)

u ′′
1 (0) = −1

and

u ′′
1 (t) + 5u1(t) = 2u2(t)

u ′′′
1 (t) + 5u ′

1(t) = 2u
′
2(t)

u ′′′
1 (0) + 5u ′

1(0) = 2u
′
2(0)

u ′′′
1 (0) + 5(0) = 2(0)

u ′′′
1 (0) = 0

(c) So we have the general solution

u1(t) = C1 cos(t) + C2 sin(t) + C3 cos(
√
6t) + C4 sin(

√
6t)

with initial conditions:

u1(0) = 1, u ′
1(0) = 0, u ′′

1 (0) = −1, u ′′′
1 (0) = 0

Plugging these in, we get the following equations:

u1(0) = C1 + 0+ C3 + 0 = C1 + C3 = 1

u ′
1(0) = 0+ C2 + 0+

√
6C4 = C2 +

√
6C4 = 0

u ′′
1 (0) = −C1 + 0− 6C3 + 0 = −C1 − 6C3 = −1

u ′′′
1 (0) = 0− C2 + 0− 6

√
6C4 = −C2 − 6

√
6C4 = 0

The second and fourth equations give us that C2 = C4 = 0.
The first and third equations are then:

C1 + C3 = 1

−C1 − 6C3 = −1

Adding the first equation to the second gives

−5C3 = 0

C3 = 0

which results in C1 = 1. Overall, the constants are:

C1 = 1, C2 = 0, C3 = 0, C4 = 0

Therefore the specific solution to this IVP is:

u1(t) = cos(t)
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(d) To find u2(t), we plug it into our original equation, and get:

u ′′
1 (t) + 5u1(t) = 2u2(t)

(cos(t)) ′′ + 5 cos(t) = 2u2(t)
− cos(t) + 5 cos(t) = 2u2(t)

u2(t) = 2 cos(t)
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