
Math 2930 Worksheet
2nd-order equations

Week 7

October 5th, 2017

Question 1. A vibrating system satisfies the equation

u ′′ + λu ′ + u = 0

Find the value of the damping coefficient λ for which the quasi-period of the damped motion is
50% greater than the period of the corresponding undamped motion.

(Hint: We would say that eat cos(bt) has “quasi-period” 2π/b since this is the period of the cosine
part, but the whole function is not strictly periodic)



Question 2. The position of a certain undamped spring-mass system satisfies the initial value
problem:

u ′′ + 2u = 0, u(0) = 0, u ′(0) = 2

(a) Find the solution of this initial value problem

For the rest of this question, I would like you to use a graphing calculator (if you have one) or an
online graphing tool (I personally recommend desmos.com). Laptops/calculators are strongly
preferred, but you may use a smartphone if you have nothing else suitable.

(b) Plot u versus t and u ′ versus t on the same axes. What do the graphs of u and u ′ look like?
What can you say about how the graphs of u and u ′ are related?

(c) Now plot u ′ versus u. By this I mean plot u(t) and u ′(t) parametrically, with t as the parameter.
This plot is known as a phase plot, and the uu ′ plane is called the phase plane.
(On Desmos, parametric plots should be formatted as (x(t), y(t)))
What does a periodic solution u(t) look like in the phase plane?
What is the direction of motion on the phase plot as t increases?

(d) Repeat part (c) , but now with:

u ′′ + 0.25u ′ + 2u = 0, u(0) = 0, u ′(0) = 2

How has the phase plot changed?
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Question 3. I went over today how if a, b, c are positive constants, then all solutions of

ay ′′ + by ′ + cy = 0

approach 0 as t→ ∞.

(a) Now, for
ay ′′ + by ′ + cy = d

where a, b, and c are positive constants, and d is a (not necessarily positive) constant, show that
all solutions approach d/c as t→ ∞.

(b) What happens if c = 0?

(c) What happens if b = 0 and c = 0?
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Question 4. It’s actually possible to combine both reduction of order and variation of parameters
at once to find the general solution of a non-homogenous second-order equation with only one
part of the homogenous solution. This question is going to help guide you through this process.

(a) Show that y1(t) = t−1 is a solution of the corresponding homogenous equation for:

y ′′ +
7

t
y ′ +

5

t2
y =

1

t
, t > 0 (1)

(b) Let y(t) = y1(t)v(t) = t−1v(t), and show that y satisfies Equation (1) if v is a solution of

1

t
v ′′ +

5

t2
v ′ =

1

t
(2)

(c) Equation (2) is first-order linear in v ′. Solve (2) for v. Then multiply v by y1 to get the general
solution of (1). You should see that this method simultaneously finds both the second homogenous
solution y2 and a particular solution Y.
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Answer to Question 1. First, let’s solve the undamped system:

u ′′ + u = 0

The characteristic polynomial is r2 + 1 = 0, resulting in a general solution of

u(t) = c1 cos(t) + c2 sin(t)

Since sine and cosine have period 2π, we now want to find λ for which the quasi-period is 3π.
For the damped system

u ′′ + λu ′ + u = 0

Solving the characteristic polynomial,

r2 + λr+ 1 = 0

r =
−λ±

√
λ2 − 4

2

r =
−λ

2
±
√
λ2 − 4

2

In order for the motion to be quasi-periodic, we would need the roots r to be complex. This
happens when λ2 − 4 < 0, yielding

r =
−λ

2
±
√
4− λ2

2
i

This corresponds to a general solution

u(t) = c1e
−λt/2 cos

(√
4− λ2

2
t

)
+ c2e

−λt/2 sin

(√
4− λ2

2
t

)

The quasi-period of this motion is then

T = 2π

(
2√
4− λ2

)
=

4π√
4− λ2

So we want to find the value of λ for which

4π√
4− λ2

= 3π

Solving,

4

3
=
√
4− λ2

16

9
= 4− λ2

16

9
−
36

9
= −λ2

λ =

√
20

9
=
2
√
5

3
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Answer to Question 2.
(a) We want to find the solution of

u ′′ + 2u = 0, u(0) = 0, u ′(0) = 2

Solving for the roots of the characteristic polynomial,

r2 + 2 = 0

r2 = −2

r = ±
√
2i

The corresponding general solution is

u(t) = c1 cos(
√
2t) + c2 sin(

√
2t)

Plugging in the initial condition u(0) = 0,

u(0) = c1 cos(0) + c2 sin(0) = 0
c1 = 0

Then plugging in the initial condition u ′(0) = 2,

u ′(t) = −
√
2c1 sin(

√
2t) +

√
2c2 cos(

√
2t)

u ′(0) = −
√
2c1 sin(0) +

√
2c2 cos(0) = 2

√
2c2 = 2

c2 =
√
2

So the specific solution to this IVP is

u(t) =
√
2 sin(

√
2t)

(b) The two functions we want to graph are

u(t) =
√
2 sin(

√
2t)

u ′(t) = 2 cos(
√
2t)

Graphed on the same axes, with u in blue and u ′ in orange
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(c) If u and u ′ are plotted parametrically, the result is an ellipse:

Here, u(t) and u ′(t) being periodic functions in t corresponds to this being a closed curve in the
phase plane.
Increasing t corresponds to travelling clockwise around the ellipse.

(d) Now we want to repeat this with

u ′′ + 0.25u ′ + 2u = 0, u(0) = 0, u ′(0) = 2

Solving for the roots of the characteristic equation,

r2 + 0.25r+ 2 = 0

r =
−0.25±

√
0.252 − 8

2

r =
−1

8
± 1
8

√
127i

This has corresponding general solution

u(t) = c1e
−t/8 cos(

√
127t/8) + c2e

−t/8 sin(
√
127t/8)

Plugging in u(0) = 0 gets us that c1 = 0, so

u(t) = c2e
−t/8 sin(

√
127t/8)

differentiating,

u ′(t) =
−c2
8
e−t/8 sin(

√
127t/8) +

√
127c2
8

e−t/8 cos(
√
127t/8)

Plugging in t = 0,

u ′(0) =

√
127c2
8

= 2

c2 =
16√
127
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So the solution to this IVP is

u(t) =
16√
127

e−t/8 sin(
√
127t/8)

Then the graph of u ′ versus u in the phase plane is this inward spiral:

Answer to Question 3.
(a) For

ay ′′ + by ′ + cy = d

Because this is a non-homogenous equation, we will need to use the method of undetermined
coefficients. Our general solution will be y(t) = yh(t)+Y(t) where yh is the homogenous solution,
and Y is the particular solution to the non-homogenous problem.
With the method of undetermined coefficients, we “guess” a particular solution of the form

Y(t) = K

where K is a constant. Plugging this into the original equation,

aY ′′ + bY ′ + cY = d

a(K) ′′ + b(K) ′ + c(K) = d

0+ 0+ cK = d

K =
d

c

So the general solution is

y(t) = yh(t) +
d

c

And since we know that the solution to the homogenous problem always approaches 0 as t→ ∞,
we see that

lim
t→∞y(t) = lim

t→∞yh(t) + lim
t→∞ d

c
=
d

c

So all solutions approach d
c as t→ ∞.
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(b) If c = 0, then our equation becomes

ay ′′ + by ′ = d

For the homogenous equation, our characteristic polynomial will be

ar2 + br = r(ar+ b)

resulting in a homogenous solution of

yh(t) = c1 + c2e
−bt/a

For the particular solution, we would normally guess Y = K as in part (a) . But since constants
are part of the homogenous solution, we will instead need to guess Y = Kt. Plugging this into the
original equation,

aY ′′ + bY ′ = d

a(0) + b(K) = d

bK = d

K =
d

b

resulting in a particular solution of

Y(t) =
dt

b

so the general solution is

y(t) = yh(t) + Y(t) = c1 + c2e
−bt/a +

dt

b

So as t→ ∞, y(t) will be dominated by the dt
b term. y(t) will approach either +∞ or −∞ depend-

ing upon the sign of d.

(c) If both b = 0 and c = 0, then our equation is

ay ′′ = d

This is technically a second-order constant coefficient non-homogenous equation. But it’s simple
enough that we can actually just integrate it twice rather than using the method of undetermined
coefficients.

ay ′′ = d

ay ′ = dt+ c1

ay =
dt2

2
+ c1t+ c2

y =
dt2

2a
+
c1t

a
+
c2
a

So we see that as t→ ∞, the dt2

2a term will dominate, again going to +∞ or −∞ depending on the
sign of d.
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Answer to Question 4.
(a) First, we calculate the derivatives of y1:

y1(t) = t
−1

y ′
1(t) = −t−2

y ′′
1 (t) = 2t

−3

Plugging these into the homogenous equation,

y ′′ +
7

t
y ′ +

5

t2
y = 0

2t−3 + 7(t−1)(−t−2) + 5(t−2)(t−1) = 0

(2− 7+ 5)t−3 = 0

0 = 0

So we see that y1(t) = t−1 is in fact a solution to the homogenous equation.

(b) First we calculate the derivatives of y as follows

y = t−1v

y ′ = −t−2v+ t−1v ′

y ′′ = 2t−3v− 2t−2v ′ + t−1v ′′

Plugging these into the non-homogenous equation,

y ′′ + 7t−1y ′ + 5t−2y = t−1

(2t−3v− 2t−2v ′ + t−1v ′′) + 7(t−1)(−t−2v+ t−1v ′) + 5(t−2)(t−1v) = t−1

(2− 7+ 5)t−3v+ (−2+ 7)t−2v ′ + t−1v ′′ = t−1

1

t
v ′′ +

5

t2
v ′ =

1

t

(c) The previous equation is linear in v ′, so we can multiply by an integrating factor in order to
solve. When written as above, the integrating factor is µ(t) = t6. So multiplying both sides by this
factor,

(t6)
1

t
v ′′ + (t6)

5

t2
v ′ = (t6)

1

t

t5v ′′ + 5t4v ′ = t5

(t5v ′) ′ = t5

t5v ′ =

∫
t5dt =

t6

6
+ c2

v ′ =
t

6
+
c2
t5

v =

∫
t

6
+
c2
t5
dt =

t2

12
+
c2
t4

+ c1
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Then multiplying by y1 to get y:

y(t) = y1(t)v(t)

y(t) =
1

t

(
t2

12
+
c2
t4

+ c1

)
giving a final answer of

y(t) =
t

12
+
c2
t5

+
c1
t

In this case we see that y1 = 1
t , y2 =

1
t5

, and Y = t
12 .
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