Math 2930 Worksheet Week 7
2nd-order equations October 5th, 2017

Question 1. A vibrating system satisfies the equation
u +Aau'+u=0

Find the value of the damping coefficient A for which the quasi-period of the damped motion is
50% greater than the period of the corresponding undamped motion.

(Hint: We would say that e®* cos(bt) has “quasi-period” 27t/b since this is the period of the cosine
part, but the whole function is not strictly periodic)



Question 2. The position of a certain undamped spring-mass system satisfies the initial value

problem:
u’ 4+ 2u=0, u(0) =0, u'(0) =2

(a) Find the solution of this initial value problem

For the rest of this question, I would like you to use a graphing calculator (if you have one) or an
online graphing tool (I personally recommend desmos.com). Laptops/calculators are strongly
preferred, but you may use a smartphone if you have nothing else suitable.

(b) Plot u versus t and u’ versus t on the same axes. What do the graphs of u and u’ look like?
What can you say about how the graphs of u and u’ are related?

(c) Now plot u’ versus u. By this I mean plot u(t) and u’(t) parametrically, with t as the parameter.
This plot is known as a phase plot, and the uu’ plane is called the phase plane.

(On Desmos, parametric plots should be formatted as (x(t),y(t)))

What does a periodic solution u(t) look like in the phase plane?

What is the direction of motion on the phase plot as t increases?

(d) Repeat part (c) , but now with:
u” +0.25u" +2u =0, u(0) =0, u/(0)=2

How has the phase plot changed?



Question 3. I went over today how if a, b, ¢ are positive constants, then all solutions of
ay” +by’ +cy=0
approach 0 as t — oo.

(a) Now, for
ay” +by’ +cy=4d

where a, b, and c are positive constants, and d is a (not necessarily positive) constant, show that
all solutions approach d/c ast — oo.

(b) What happens if ¢ = 0?

(c) What happensif b =0 and ¢ = 0?



Question 4. It’s actually possible to combine both reduction of order and variation of parameters
at once to find the general solution of a non-homogenous second-order equation with only one
part of the homogenous solution. This question is going to help guide you through this process.

(a) Show that y;(t) = t ! is a solution of the corresponding homogenous equation for:
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(b) Let y(t) = y1(t)v(t) = t~'v(t), and show that y satisfies Equation (1) if v is a solution of

1 5 1
{V” + ?V, = { (2)

(c) Equation (2) is first-order linear in v’. Solve (2) for v. Then multiply v by y; to get the general
solution of (1). You should see that this method simultaneously finds both the second homogenous

solution y; and a particular solution Y.



Answer to Question 1. First, let’s solve the undamped system:
u +u=0
The characteristic polynomial is T* + 1 = 0, resulting in a general solution of
u(t) = ¢y cos(t) + ¢y sin(t)

Since sine and cosine have period 27, we now want to find A for which the quasi-period is 3.
For the damped system
uw +a +u=0

Solving the characteristic polynomial,

PHAr+1=0

In order for the motion to be quasi-periodic, we would need the roots r to be complex. This
happens when A2 — 4 < 0, yielding
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This corresponds to a general solution

VAN Ry,
u(t) = cre M2 cos ( 3 t> + coe M2 sin ( t)

The quasi-period of this motion is then
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So we want to find the value of A for which
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Answer to Question 2.
(a) We want to find the solution of

u’ +2u=0, u(0) =0, u'(0) =2

Solving for the roots of the characteristic polynomial,

2 4+2=0
=2
r=4+V2i

The corresponding general solution is
u(t) = ¢ cos(V2t) + ¢, sin(V2t)
Plugging in the initial condition u(0) =0,
u(0) = ¢qcos(0) + ¢sin(0) =0
c1=0
Then plugging in the initial condition u’(0) = 2,
u/(t) = —v2¢; sin(vV2t) + v2¢; cos(V/2t)
u/(0) = —v/2¢; sin(0) + v2¢, cos(0) = 2
V2e, =2
¢ =v2

So the specific solution to this IVP is

u(t) = v2sin(v2t)

(b) The two functions we want to graph are
u(t) = v2sin(v2t)
u/(t) = 2 cos(V2t)

Graphed on the same axes, with u in blue and u’ in orange
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(c) If uand u’ are plotted parametrically, the result is an ellipse:
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Here, u(t) and u/(t) being periodic functions in t corresponds to this being a closed curve in the
phase plane.
Increasing t corresponds to travelling clockwise around the ellipse.

(d) Now we want to repeat this with
u” +0.25u" +2u =0, u(0) =0, u'(0) =2
Solving for the roots of the characteristic equation,

M 4+025r+2=0
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This has corresponding general solution
u(t) = cre V8 cos(vV127t/8) + cre 8 sin(v127t/8)
Plugging in u(0) = 0 gets us that ¢y =0, so
u(t) = coe ¥3sin(vV127t/8)

differentiating,

u'(t) = %Cze_t/g sin(V127t/8) + %e—tﬂi cos(V127t/8)

Pluggingint =0,

(0] = Viie,
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So the solution to this IVP is

u(t) = \/]%e_t/g sin(v/127t/8)

Then the graph of u’ versus u in the phase plane is this inward spiral:
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Answer to Question 3.
(a) For
ay”+by +cy=d

Because this is a non-homogenous equation, we will need to use the method of undetermined
coefficients. Our general solution will be y(t) = yn(t)+Y(t) where yy is the homogenous solution,
and Y is the particular solution to the non-homogenous problem.

With the method of undetermined coefficients, we “guess” a particular solution of the form

Y(t) =K
where K is a constant. Plugging this into the original equation,

aY’"4+bY' +cY=4d
a(K)” +b(K) +c(K)=d

04+0+cK=d
k=4
c

So the general solution is
d
Yt =y +

And since we know that the solution to the homogenous problem always approaches 0 as t — oo,
we see that

lim y(t) = lim y (1) + lim & = ¢

t—o0 t—o0o C C

So all solutions approach ¢ as t — co.



(b) If c = 0, then our equation becomes
ay” +by’ ' =d
For the homogenous equation, our characteristic polynomial will be
ar’ + br =r(ar+b)
resulting in a homogenous solution of
—bt/a

Yn(t) =c1 +cae

For the particular solution, we would normally guess Y = K as in part (a) . But since constants
are part of the homogenous solution, we will instead need to guess Y = Kt. Plugging this into the
original equation,

aY”+bvY' =d
a(0) +b(K)=d
bK =d
d
K=—-
b
resulting in a particular solution of
Y(t) = a
b

so the general solution is

dt
b

y(t) = yh(t) + Y(t) =cy + Cze—bt/a +

Soast — oo, y(t) will be dominated by the & term. y(t) will approach either +oco or —co depend-
ing upon the sign of d.

(c) If both b = 0 and ¢ = 0, then our equation is
ay’ =d

This is technically a second-order constant coefficient non-homogenous equation. But it’s simple
enough that we can actually just integrate it twice rather than using the method of undetermined
coefficients.

ay//:d
ay’ =dt + ¢
dZ
asz—i—c]t—i-cz
dt? cit ¢
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So we see that as t — oo, the %2 term will dominate, again going to +-co or —co depending on the
sign of d.



Answer to Question 4.
(a) First, we calculate the derivatives of y:

Plugging these into the homogenous equation,
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" /
- —y =0
Yy iy gy
A3+ 7t () +5( ) =0
2-74+5t3=0
0=0

So we see that y;(t) = t ! is in fact a solution to the homogenous equation.

(b) First we calculate the derivatives of y as follows

y= tv
/ -2 =1,/
Yy =—t v+t v
y// — zt—Sv _ thzv/ + t—lv//

Plugging these into the non-homogenous equation,

Yy + 7ty 5ty =t
2t 3 =2tV + V) + 7 ) (—t v+t V) + 5 ) () =t
2—745t v+ (247t +t W =t

1, 5, 1

(c) The previous equation is linear in v/, so we can multiply by an integrating factor in order to
solve. When written as above, the integrating factor is p(t) = t°. So multiplying both sides by this
factor,

1 5 1

(t6)¥vu + (t6)t7V/ — (t6)¥
t5v”+5t4v’ :t5
(tSV/)/:tS
tS ! [ 5d _t6
vi=|t t—g—i—cz
t C2
I __
A% —g+t*5
) t2 (5)
v=|—-+zdt=—=+ 7 +c¢
67 P n e

10



Then multiplying by y; to get y:

giving a final answer of

_t. e «a
y(t)_12+t5+t

In this case we see that y; = %,yz = tlS, andY = %
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