
Math 2930 Worksheet
Prelim 1 Review

Week 6

September 28, 2017

Question 1.
Consider the following differential equation

y ′′ − (2α− 1)y ′ + α(α− 1)y = 0

where α is a real parameter. Determine the values of α, if any, for which
(a) all solutions of the above equation tend to zero as t→ ∞;
(b) all (nonzero) solutions become unbounded as t→ ∞.



Question 2.
Find the general solution for each of the following differential equations:
(a)

y ′ = e2x + y− 1

(b)

(cos x+ lny)dx+
(
x

y
+ ey

)
dy = 0
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Question 3. Consider the equation

dy

dt
= y

y(0) = 1

(a) Find the analytical solution for y(t) for the given initial condition

(b) If instead we solve the equation using the forward Euler’s method, with a step size of h, write
down the first 2 iterations. Express your answers in terms of h.

(c) Based on (b) , write down the expression after n-th iteration.

(d) Let n be the number of steps over the interval [0, t], with n = t/h, show that in the limit as
h → 0, and n → ∞, the numerical answer given by Euler’s method converges to the analytical
solution that you found in part (a) .
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Question 4. The amount of C-14 in a fossil decays in time, and this decay can be described by
a linear model based on the assumption that the rate of decay is proportional to the amount of
substance remaining at time t.

(a) Write down and solve the differential equation describing the radioactive decay of C-14.

(b) Use the solution to estimate the age of a fossil which contains 0.1% of its original amount of
C-14. Assume that the half-life of C-14 is 5700 years (The half-life of a radioactive substance is the
time it takes for one-half of the atoms in an initial amount of the substance to disintegrate). In
your estimates, you may take ln 10/ ln 2 ≈ 3.32 .
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Question 5. Consider the differential equation: y ′ = y− y3

(a) Find the equilibrium solutions and determine which of these solutions are asymptotically sta-
ble, semistable, and unstable.

(b) Draw the phase line and sketch several solution curves in the ty-plane for t > 0 .

(c) Assuming that the solution y(t) has the initial value y(0) = − 1
2 , compute the limit of y(t) as

t→ +∞ .
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Question 6. When a raindrop falls from a cloud, it evaporates (i.e. loses its mass through evapo-
ration). Assume that the raindrop evaporates in such a manner that its shape remains spherical,
and the rate of evaporation is proportional to its surface area.

(a) Show that the rate at which the radius r of the raindrop decreases is a constant c inversely
proportional to the density ρ of water.

(b) A model for the velocity v(t) of the raindrop is given by the differential equation

dv

dt
+

3c

(ct+ r0)
v = g

Here c < 0 is the constant introduced in Part (a) , r0 is the radius of the raindrop at t = 0, and g is
the acceleration due to gravity. Assuming that the raindrop falls from rest, solve the equation for
v(t). Explain why this model is physically meaningful only if 0 ≤ t < −r0/c
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Answer to Question 1. To find the general solution of this equation, we look at the characteristic
polynomial:

r2 − (2α− 1)r+ α(α− 1) = 0

this factors as
(r− α)(r− α+ 1) = 0

(If you didn’t see that it factors, you could just use the quadratic equation instead.) The roots of
this equation are

r = α, α− 1

so the general solution is
y(t) = C1e

αt + C2e
(α−1)t

(a) In order for all solutions to tend to zero as t→ ∞, we would need that both of the fundamental
solutions eαt and e(α−1)t go to zero. This happens when both α and α − 1 are negative, which is
the range:

α < 0

(b) In order for all solutions to become unbounded as t → ∞, this would require that both of the
fundamental solutions eαt and e(α−1)t become unbounded. This happens when both α and α − 1
are positive, which is the range:

α > 1

Answer to Question 2.
(a) This is a first-order linear ODE, so we can solve it using integrating factors. To do that, we
write it as:

y ′ − y = e2x − 1

We want to find a function µ(x), so that when we multiply the entire equation by µ, the left hand
side becomes something that looks like a product rule. So we want the left hand side of

µy ′ − µy = µe2x − µ

to look like a product rule. This will happen when

dµ

dt
= −µ

which has as a solution
µ(x) = e−x

So our equation becomes

e−xy ′ − e−xy = ex − e−x(
e−xy

) ′
= ex − e−x

Integrating both sides,
e−xy = ex + e−x + C
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then multiplying both sides by ex, we get the solution

y = e2x + 1+ Cex

(b) This equation is in the form Mdx+Ndy = 0, and is not separable, so we’ll try checking if it is
an exact equation.
To check if it’s exact, we compute:

∂M

∂y
=
∂

∂y

[
cos x+ lny

]
=
1

y

and
∂N

∂x
=
∂

∂x

[
x

y
+ ey

]
=
1

y

Since these two partial derivatives are equal, the equation is exact.
So we want to look for a functionΦ(x, y), whose partial derivatives are

∂Φ

∂x
=M = cos x+ lny

∂Φ

∂y
= N =

x

y
+ ey

Integrating both of these functions, we get

Φ = sin x+ x lny+ f(y)

Φ = x lny+ ey + g(x)

for some functions f and g. Comparing these two equations, we see that f(y) = ey and g(x) = sin x,
so the general solution is

Φ(x, y) = sin x+ x lny+ ey = C

Answer to Question 3.
(a) We have the equation

dy

dt
= y

This is separable, so we solve it as follows:∫
dy

y
=

∫
dt

ln(y) = t+ C

y = Cet

plugging in the initial condition y(0) = 1, we get that C = 1, resulting in an analytical solution of

y(t) = et
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(b) With Euler’s method, we start with the initial condition:

y0 = 1

The first step gives
y1 = y0 + hf(y0) = y0 + hy0 = (1+ h)y0 = 1+ h

then the second step gives

y2 = y1 + hf(y1) = y1 + h(y1) = (1+ h)y1 = (1+ h)(1+ h) = (1+ h)2

(c) From (b) we see that there is a pattern that

yn+1 = (1+ h)yn

resulting in the formula:
yn = (1+ h)n

(d) Taking our answer from (c) and replacing nwith t/h, we have

yn = (1+ h)t/h

Then we are interested in taking the limit as h→ 0

lim
h→0yn = lim

h→0(1+ h)t/h
To figure out this limit, it helps to take the logarithm of both sides,

lim
h→0 ln(yn) = lim

h→0 ln
[
(1+ h)t/h

]
= lim
h→0 t ln(1+ h)

h

this can then be evaluated using L’hôpital’s rule,

lim
h→0 ln(yn) = lim

h→0
t 1
1+h

1
= t

Then since
lim
h→0 ln(yn) = t

we have
lim
h→0yn = et

matching our solution from part (a) .
Note: you can also do this problem by taking the limit as n→ ∞ instead of h→ 0 in a very similar
way, but the details are a little trickier.

Answer to Question 4. (a) Let’s use the functionQ(t) to represent the amount of C-14 as a function
of time t in years.
Then it’s rate of decay is dQ

dt , so this being proportional to the amount of C-14 remaining at time t
means that this decay is described by the differential equation

dQ

dt
= rQ
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for some constant r.
This is a separable equation that we can solve as follows:∫

dQ

Q
=

∫
rdt

lnQ = rt+ C

Q = Cert

where the constant C is given by the initial amount Q0 of the substance, so our solution is

Q(t) = Q0e
rt

(b) First, we can use the half-life to determine our constant r. We know that after 5700 years, we
have half of the initial amount of C-14 remaining. In terms of equations, this means

Q(5700) =
1

2
Q0

so plugging this into our solution from part (a) ,

Q(5700) = Q0e
5700r =

1

2
Q0

e5700r =
1

2

5700r = ln(1/2) = − ln(2)

r =
− ln(2)
5700

So if we want to find the time τ after which only 0.1% of the substance is remaining, this means
we have

Q(τ) = Q0e
rτ = 0.001Q0

erτ = 0.001

rτ = ln(0.001) = ln(10−3) = −3 ln(10)

τ =
−3 ln(10)

r
=

−3 ln(10)5700
ln(2)

≈ −3(3.32)5700

τ = 56, 772 years
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Answer to Question 5.
(a) Since this is an autonomous equation, we’ll first look at the graph of dy

dt (vertical axis) vs y
(horizontal axis):

The equilibria occur where this graph crosses the horizontal axis, these are the values of y where
dy
dt = 0. Solving for them,

dy

dt
= y− y3 = 0

y(1− y2) = y(1− y)(1+ y) = 0

y = 0, 1, −1

To figure out whether these equilibrium solutions are stable, unstable, or semistable, we will look
at the sign of dydt nearby.
For y = −1, we see that for values of y less than -1, dydt if positive, so solutions are increasing.
For values of y slightly greater than −1, we see dy

dt is negative, so solutions are decreasing. Since
solutions below y = −1 are increasing and solutions above are decreasing, we get that

y = −1 is a stable equilibrium

For y = 0, solutions slightly below are decreasing and solutions slightly above are increasing, so

y = 0 is an unstable equilibrium

For y = 1, solutions slightly below are increasing and solutions slightly above are decreasing, so

y = 1 is a stable equilibrium

(b)
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The phase line looks like:
y

-1 0 1

and the solutions look like:

Here the equilibria are in blue, and solutions are in red and black.

If the initial condition is y(0) = − 1
2 , then the solution y(t) will approach the nearest stable equi-

librium at y = −1.
This specific solution y(t) is the one graphed in black above.

Answer to Question 6.
(a) Since the raindrop is spherical, it has surface area SA = 4πr2 and volume V = 4

3πr
3.

Since the raindrop is evaporating, it is losing mass M at a rate proportional to its surface area. In
terms of differential equations, this means

dM

dt
= k(SA) = k4πr2

for some (negative) constant k.
We can also write its mass in terms of its density ρ as

M = ρV = ρ

(
4

3
πr3
)

differentiating both sides and using the chain rule,

dM

dt
=
d

dt

[
4

3
πr3ρ

]
= 4πr2ρ

dr

dt

Putting our two equations for dM
dt together,

dM

dt
= k4πr2 = 4πr2ρ

dr

dt
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then solving for dr
dt ,

dr

dt
=
k

ρ
= c

meaning that the rate at which the radius is decreasing is a constant, where said constant is in-
versely proportional to the density of water.

(b) Here we want to solve the equation

dv

dt
+

3c

(ct+ r0)
v = g

since the raindrop starts at rest, the initial condition is

v(0) = 0

Since our equation is first-order and linear in v, we can solve it using integrating factors.
So we multiply everything by a function µ(t):

µ
dv

dt
+

3cµ

(ct+ r0)
v = gµ

In order to get the left hand side to look like the result of a product rule, we need µ to satisfy

dµ

dt
=

3cµ

ct+ r0

this equation is separable: ∫
dµ

µ
=

∫
3c

ct+ r0
dt

ln(µ) = 3 ln(ct+ r0)

µ(t) = (ct+ r0)
3

(since we just want a integrating factor, we can ignore the constant in the integration above.)
Multiplying everything by our integrating factor µ,

(ct+ r0)
3dv

dt
+ 3c(ct+ r0)

2v = g(ct+ r0)
3[

(ct+ r0)
3v

] ′
= g(ct+ r0)

3

(ct+ r0)
3v =

g

4c
(ct+ r0)

4 + C0

v(t) =
g

4c
(ct+ r0) +

C0
(ct+ r0)3

Now we plug in the initial condition v(0) = 0 to solve for the constant C0:

v(0) =
g

4c
(r0) +

C0

r30
= 0
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C0 =
−gr40
4c

Plugging that back in, our solution v(t) is given by:

v(t) =
g

4c

[
(ct+ r0) −

r40
(ct+ r0)3

]
Here are a couple possible ways of explaining why the model is only physically meaningful for
0 ≤ t < −r0/c:

• The radius r of the raindrop is given by r = ct + r0 (see (a) ), and after the given time this
radius would be negative. This situation isn’t physically meaningful; what is the velocity of
the raindrop if there is no raindrop?

• Our solution v(t) above is only defined when the ct+r0 term in the denominator is nonzero.
At t = −r0/c this denominator would be zero, meaning v(t) would not be defined at that
time. So it wouldn’t really make sense to consider v(t) for any t after that point.

• If ct + r0 is negative, then if we look at the original differential equation, it would give us
that dvdt > g, i.e. that acceleration is greater than gravity, which cannot be the case.
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