
Math 2930 Worksheet
Exact Equations

Week 4

September 14, 2017

Question 1.
Separable equations are those that can be written in the form:

f(y)
dy

dx
= g(x)

When are these equations also exact? Explain your reasoning.

Question 2. (a) Find the value(s) of b for which the given equation is exact:

(xy2 + bx2y) + (x+ y)x2y ′ = 0

(b) Solve it for the value of b you found in part (a) .



Question 3. (a) Show that the equation below is not exact:

x2y3 + x(1+ y2)y ′ = 0

(b) Show that it can be made exact by multiplying both sides of the equation by the integrating
factor µ(x, y) = 1

xy3
.

(c) Now that the equation is exact, solve it.
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Question 4. (a) Show that the equation below is not exact:

y+ (2xy− e−2y)y ′ = 0

(b) It turns out that we can make this equation exact by using some sort of integrating factor µ
(like we did in the previous question).

In order to find µ, we’ll have to assume that it depends on either x only or on y only, but not both.
If µ were to depend on x only, then we would want to get an ordinary differential equation for µ
that would also only involve x only, and not y, so that we could solve for µ(x). And vice versa for
µ depending on y only.

Which one of these approaches works for this equation and why?

(c) Solve the differential equation you found in part (b) for µ
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(d) Solve the original equation in part (a) using the integrating factor µ you found in part (c)

(e) Can you extend your argument from part (b) to more general equations?

M(x, y) +N(x, y)
dy

dx
= 0

i.e. what are the conditions on M and N such that an integrating factor µ = µ(x) can be used to
make the equation exact? When can an integrating factor µ = µ(y) be used?
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Answer to Question 1.
Rewriting this equation in the usual form, we have

g(x) − f(y)
dy

dx
= 0

So we haveM(x, y) = g(x) and N(x, y) = −f(y).

In order for the equation to be exact, we need thatMy = Nx.
In this case, My = ∂

∂y [g(x)] = 0 and Nx = − ∂
∂x [f(y)] = 0 no matter what f and g are, so separable

equations are always exact.

Answer to Question 2.
(a) This equation is exact when:

My = Nx

So for this problem, that becomes:

∂

∂y

[
xy2 + bx2y

]
=
∂

∂x

[
(x+ y)x2

]
Simplifying and solving for b,

2xy+ bx2 = 3x2 + 2xy

bx2 = 3x2

b = 3

Therefore b = 3 is the only value of b for which the given equation is exact.

(b) For b = 3, we now want to find a function ψ(x, y) such that:

∂ψ

∂x
=M(x, y) = xy2 + 3x2y

and
∂ψ

∂y
= N(x, y) = x3 + x2y

Integrating the first equation with respect to x (while holding y constant), we get:

ψ(x, y) =
x2y2

2
+ x3y+ f(y)

for some function f(y).
Differentiating with respect to y and setting it equal to N, we have

∂ψ

∂y
x2y+ x3 + f ′(y) = N(x, y) = x3 + x2y

So clearly f ′(y) = 0, which means that f(y) is a constant.
Therefore the general solution is:

ψ(x, y) =
x2y2

2
+ x3y = C
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Answer to Question 3. (a) For this equation:

M(x, y) = x2y3, N(x, y) = x(1+ y2)

To check if it’s exact, we calculate
∂M

∂y
= 3x2y2

and
∂N

∂x
= 1+ y2

SinceMy 6= Nx, this equation is not exact.

(b) Multiplying everything by the integrating factor µ(x, y) = 1
xy3

,

M(x, y) = x

∂M

∂y
= 0

and
N(x, y) =

1

y3
+
1

y

∂N

∂x
= 0

SinceMy = Nx, the equation

x+

(
1

y3
+
1

y

)
y ′ = 0

is exact (in fact it is actually separable).

(c) We want to find a function ψ(x, y) with partial derivatives:

∂ψ

∂x
= x,

∂ψ

∂y
=
1

y3
+
1

y

Integrating the first of those, we get

ψ(x, y) =
1

2
x2 + f(y)

for some function f(y). Integrating the second equation,

ψ(x, y) =
−1

2y2
+ ln(y) + g(x)

Combining these two, we find that the solution is:

ψ(x, y) =
1

2
x2 +

−1

2y2
+ ln(y) = C
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Answer to Question 4. (a) For this equation,

M(x, y) = y, N(x, y) = 2xy− e−2y

To check if it is exact, we compute
∂M

∂y
= 1

and
∂N

∂x
= 2y

SinceMy 6= Nx, this equation is not exact.

(b) So we want to come up with an integrating factor µ so that if we multiply the entire equation
by µ, then our equation is now exact.
There are two approaches we can try: either assuming that µ = µ(x) only, or that µ = µ(y) only. If
we make these assumptions, it may be possible that we get an ODE we can solve to find µ.

So what happens if we assume µ = µ(x) only? Our equation becomes

yµ(x) + µ(x)
(
2xy− e−2y

) dy
dx

= 0

Now we check the condition for exactness:

∂M

∂y
= µ(x)

∂N

∂x
= µ ′(x)

(
2xy− e−2y

)
+ µ(x)2y

So this equation is exact if:

µ(x) = µ ′(x)
(
2xy− e−2y

)
+ µ(x)2y

Since this expression depends on both x and y, there is not a function µ(x) that will satisfy this
equation.

Now, let’s try an integrating factor of the form µ = µ(y). Our equation becomes

yµ(y) + µ(y)
(
2xy− e−2y

) dy
dx

= 0

Now we check the condition for exactness:

∂M

∂y
= yµ ′(y) + µ(y)

∂N

∂x
= µ(y)2y

So this equation is exact if:
yµ ′(y) + µ(y) = µ(y)2y

After rearranging,

µ ′(y) +

(
1

y
− 2

)
µ(y) = 0
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Which we see is a first-order linear ODE in y. So if µ(y) is a solution of this ODE, it is an integrating
factor for the original equation.

(c) This linear ODE can be solved as usual, using (another) integrating factor. This means we want
to multiply both sides by some function η so that the left hand side looks like a product rule.

ηµ ′(y) + η

(
1

y
− 2

)
µ(y) = 0

In order for this to be a product rule, we would need

dη

dy
= η

(
1

y
− 2

)
This can be separated: ∫

dη

η
=

∫ (
1

y
− 2

)
dy

Solving for η,
ln(η) = ln(y) − 2y+ C

η = Cye−2y

Since the constant doesn’t matter for an integrating factor, we’ll just take C = 1. So plugging this
back in, the ODE for µ(y) becomes:

ye−2yµ ′(y) +
(
e−2y − 2ye−2y

)
µ(y) = 0

The left hand side is now in the form of a product rule:(
ye−2yµ(y)

) ′
= 0

Integrating both sides,
ye−2yµ(y) = C

Again, since µ is an integrating factor, the choice of constant C does not matter, so we will take
C = 1 for simplicity. Then we find the integrating factor is:

µ(y) =
e2y

y

(d) Multiplying both sides of the original equation by the integrating factor µ(y) = e2y

y ,

e2y +

(
2xe2y −

1

y

)
dy

dx
= 0

We can check that the equation is now exact:

∂M

∂y
= 2e2y

∂N

∂x
= 2e2y
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So we want to look for a solution of the form ψ(x, y) = C. ψmust have partial derivatives:

∂ψ

∂x
=M(x, y) = e2y

∂ψ

∂y
= N(x, y) = 2xe2y −

1

y

Integrating the first equation with respect to x,

ψ(x, y) = xe2y + f(y)

for some function f(y).
Integrating the second equation with respect to y,

ψ(x, y) = xe2y − ln(y) + g(x)

for some function g(y).
Putting these two together, we see that the final solution is

ψ(x, y) = xe2y − ln(y) = C

(e) In general, if we multiply by an integrating factor µ(x), we have

µ(x)M(x, y) + µ(x)N(x, y)
dy

dx
= 0

This equation is exact if:
∂

∂y

[
µ(x)M(x, y)

]
=
∂

∂x

[
µ(x)N(x, y)

]
µ(x)My = µ

′(x)N+ µ(x)Nx

Rearranging,

µ ′(x) =

(
My −Nx

N

)
µ(x)

In general, the My−Nx

N term can depend on both x and y. In order to be able to solve for µ as a
function of x, we then need for this term to depend only on x. In other words, an integrating factor
of the form µ(x) can be found if:

My −Nx
N

is a function of x only

We can repeat the same process with µ(y) instead of µ(x). Our equation becomes:

µ(y)M(x, y) + µ(y)N(x, y)
dy

dx
= 0

Checking for exactness,
∂

∂y

[
µ(y)M(x, y)

]
=
∂

∂x

[
µ(y)N(x, y)

]
µ(y)My + µ

′(y)M = µ(y)Nx
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Rearranging,

µ ′(y) =

(
Nx −My

M

)
µ(y)

So an integrating factor of the form µ(y) can be used if and only if:

Nx −My

M
is a function of y only
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