
Math 2930 Worksheet
Final Exam Review

Week 14

November 30th, 2017

Question 1. (*) Solve the initial value problem

y ′ − y = 2xex, y(0) = 1



Question 2. (*) Consider the differential equation: y ′ = y− y3.

(a) Find the equilibrium solutions and determine which of these solutions are asymptotically sta-
ble, semistable, and unstable.

(b) Draw the phase line and sketch several solution curves in the ty-plane for t > 0.

(c) Assuming that the solution y(t) has the initial value y(0) = − 1
2 , compute the limit of y(t) as

t→ +∞.
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Question 3. (*) Find the general solution of the differential equation

dy

dx
=
x+ 3y

x− y
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Question 4. (*) Consider a uniform rod of length L with initial temperature distribution given by
u(x, 0) = sin(πx/L), 0 ≤ x ≤ L. Assuming that both ends of the rods are insulated,

(a) Find the temperature u(x, t) for t > 0;

(b) Determine the steady state temperature as t→ +∞
(c) Describe briefly how the temperature in the rod changes as time progresses.
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Question 5. (*) (a) The 2-dimensional wave equation is given by

utt = a
2 (uxx + uyy) (1)

Assuming that the solution of (1) has the form u(x, y, t) = X(x)Y(y)T(t), find the ordinary differ-
ential equations satisfied by the functions X(x), Y(y), and T(t).

(b) In polar coordinates, the 2D wave equation is written as

utt = a
2

(
urr +

1

r
ur +

1

r2
uθθ

)
(2)

Assuming that the solution of (2) has the form u(r, θ, t) = R(r)Θ(θ)T(t), find the ordinary differ-
ential equations satisfied by the functions R(r), Θ(θ) and T(t).
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Question 6. (*) The Neumann problem for the Laplace equation in the interior of the circle r = a

is given by

urr +
1

r
ur +

1

r2
uθθ = 0, 0 ≤ r < a, 0 ≤ θ < 2π

ur(a, θ) = f(θ), 0 ≤ θ < 2π

(a) Using the method of separation of variables, find the solution to this problem.

(b) What condition should one impose on the function f(θ) for this problem to be solvable?
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Answer to Question 1. This is a first-order linear equation, so we can solve it using integrating
factors. (You could also use something like method of undetermined coefficients, but this would
be harder).
We have the equation

y ′ − y = 2xex

Multiplying both sides by e
∫
−1dx = e−x,

e−xy ′ − e−xy = 2x

and then using the product rule, (
e−xy

) ′
= 2x

Integrating both sides and then solving for y,∫ (
e−xy

) ′
dx =

∫
2xdx

e−xy = x2 + C

y = x2ex + Cex

Now we plug in the initial condition to find C:

y(0) = 02(1) + C(1) = 1

C = 1

so the final answer is:
y = x2ex + ex

Answer to Question 2.
(a) Since this is an autonomous equation, we’ll first look at the graph of dy

dt (vertical axis) vs y
(horizontal axis):
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The equilibria occur where this graph crosses the horizontal axis, these are the values of y where
dy
dt = 0. Solving for them,

dy

dt
= y− y3 = 0

y(1− y2) = y(1− y)(1+ y) = 0

y = 0, 1, −1

To figure out whether these equilibrium solutions are stable, unstable, or semistable, we will look
at the sign of dydt nearby.
For y = −1, we see that for values of y less than -1, dydt if positive, so solutions are increasing.
For values of y slightly greater than −1, we see dy

dt is negative, so solutions are decreasing. Since
solutions below y = −1 are increasing and solutions above are decreasing, we get that

y = −1 is a stable equilibrium

For y = 0, solutions slightly below are decreasing and solutions slightly above are increasing, so

y = 0 is an unstable equilibrium

For y = 1, solutions slightly below are increasing and solutions slightly above are decreasing, so

y = 1 is a stable equilibrium

(b)
The phase line looks like:

y
-1 0 1

and the solutions look like:
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Here the equilibria are in blue, and solutions are in red and black.

If the initial condition is y(0) = − 1
2 , then the solution y(t) will approach the nearest stable equi-

librium at y = −1.
This specific solution y(t) is the one graphed in black above.

Answer to Question 3. This equation can be solved by noticing that the right hand side can be
written as a function of y/x only.
Factoring x out of both the numerator and denominator,

dy

dx
=
x+ 3y

x− y
=
x
(
1+ 3yx

)
x
(
1− y

x

) =
1+ 3

(
y
x

)
1−

(
y
x

)
So this means that we can solve the equation by using the substitution

v =
y

x
which can also be written as y = vx

Using the product rule,
d

dx
[y] =

d

dx
[vx] =

dv

dx
x+ v

So our differential equation becomes

dv

dx
x+ v =

1+ 3v

1− v

This new equation is in fact separable:

dv

dx
x =

1+ 3v

1− v
− v =

1+ 2v+ v2

1− v
=

(1+ v)2

1− v∫
(1− v)

(1+ v)2
dv =

∫
1

x
dx

This integral on the left hand side can be computed using partial fractions, but (in my opinion at
least) an easier way is to use another substitution of

u = v+ 1

Now we have ∫
(2− u)

u2
du =

∫
1

x
dx∫ (

2

u2
−
1

u

)
du =

∫
1

x
dx

−2

u
− ln |u| = ln |x|+ C

Now, we undo the substitutions,

−2

v+ 1
− ln |v+ 1| = ln |x|+ C

−2
y
x + 1

− ln
∣∣∣y
x
+ 1
∣∣∣ = ln |x|+ C
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which can be simplified slightly to

−2x

x+ y
= ln |x|+ ln

∣∣∣y
x
+ 1
∣∣∣+ C

2x

x+ y
+ ln |x+ y| = C

Answer to Question 4. The heat equation describing the temperature distribution of the rod is:

ut = auxx

The ends of the rod being insulated means that our boundary conditions are:

ux(0, t) = ux(L, t) = 0

So using separation of variables, we look for solutions of the form:

u(x, t) = X(x)T(t)

Plugging this into the heat equation and separating variables,

XT ′ = aX ′′T

T ′

aT
=
X ′′

X

Since the left hand side depends only on t and the right hand side depends only on x, they must
both be equal to the same constant, which we will call −λ:

T ′

aT
=
X ′′

X
= −λ

which gives us two ODEs for X(x) and T(t):

X ′′ + λX = 0

T ′ + aλT = 0

We can also convert the boundary conditions on u(x, t) into boundary conditions on X(x) as fol-
lows:

ux(0, t) = X
′(0)T(t) = 0 =⇒ X ′(0) = 0

ux(L, t) = X
′(L)T(t) = 0 =⇒ X ′(L) = 0

So we are looking for nontrivial solutions to the boundary value problem

X ′′ + λX = 0, X ′(0) = X ′(L) = 0

For λ < 0, we get only the trivial solution X = 0.
For λ = 0, we get the general solution is:

X(x) = c1x+ c2

Plugging in the boundary conditions, we get that X(x) = c2 is a solution for any constant c2.
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For λ > 0, we get a general solution of:

X(x) = c1 cos
(√
λx
)
+ c2 sin

(√
λx
)

Plugging in the first boundary condition,

X ′(0) = −
√
λc1 sin(0) +

√
λc2 cos(0) = 0

√
λc2 = 0

c2 = 0

and the second boundary condition, looking for non-trivial solutions,

X ′(L) ==
√
λc1 sin

(√
λL
)
= 0

sin
(√
λL
)
= 0

√
λL = nπ, n = 1, 2, 3...

λ =
(nπ
L

)2
, n = 1, 2, 3...

So, along with λ = 0, these are the eigenvalues, and they have corresponding eigenfunctions:

Xn(x) = cn cos
(nπx
L

)
, n = 1, 2, 3...

where cn could be any constant.
Now to solve for T(t) with these values of λ. For λ = 0, our equation for T is:

T ′(t) = 0

the solutions to which are that T is constant.
For λ = (nπ/L)2, our equation for T is:

T ′ +
(nπa
L

)2
T = 0

the solutions to which are:
Tn(t) = cne

−(nπaL )
2
t

So putting this together, our solution to the heat equation is:

u(x, t) =

∞∑
n=0

Xn(x)Tn(t) =
c0
2

+

∞∑
n=1

cn cos
(nπx
L

)
e−(

nπa
L )

2
t

Plugging in the initial conditions,

u(x, 0) =
c0
2

+

∞∑
n=1

cn cos
(nπx
L

)
= sin

(πx
L

)
, 0 < x < L

So this means we want the cn to be given by the coefficients of the cosine series for sin(x). These
are given by the formulas:

c0 =
2

L

∫L
0

sin
(πx
L

)
dx

cn =
2

L

∫L
0

sin
(πx
L

)
cos
(nπx
L

)
dx
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(Note: Many students are tempted to say here that these integrals are then zero because sin() and
cos() are orthogonal. But really, they are just orthogonal on the interval [−L, L], whereas here we
are only integrating on [0, L], over which the integrals are not orthogonal.)
We can then compute c0 as follows:

c0 =
2

L

∫L
0

sin
(πx
L

)
dx

c0 =
2

L

[
−
L

π
cos
(πx
L

)]∣∣∣∣L
0

c0 =
−2

π
[cos(π) − cos(0)] =

4

π

The integral for cn is more difficult (and personally I would not expect students to be able to come
up with it on their own during an exam). It can be done by using trig identities to change the
product of trig functions into a sum.
The angle addition formulas tell us that:

sin
(
(n+ 1)πx

L

)
= sin

(πx
L

)
cos
(nπx
L

)
+ cos

(πx
L

)
sin
(nπx
L

)
sin
(
(n− 1)πx

L

)
= sin

(
−πx

L

)
cos
(nπx
L

)
+ cos

(
−πx

L

)
sin
(nπx
L

)
= − sin

(πx
L

)
cos
(nπx
L

)
+ cos

(πx
L

)
sin
(nπx
L

)

So we can combine the two equations above to get:

1

2

[
sin
(
(n+ 1)πx

L

)
− sin

(
(n− 1)πx

L

)]
= sin

(πx
L

)
cos
(nπx
L

)
For the special case of c1, this n− 1 term will be zero, meaning we have to handle it on its own as
follows:

c1 =
2

L

∫L
0

sin
(πx
L

)
cos
(πx
L

)
dx

c1 =
1

L

∫L
0

sin
(
2πx

L

)
dx

c1 =
1

L

[
L

2π
cos
(
2πx

L

)]∣∣∣∣L
0

=
1

2π
[cos(2π) − cos(0)] = 0
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Now we can calculate the rest of the cn as:

cn =
2

L

∫L
0

sin
(πx
L

)
cos
(nπx
L

)
dx, n = 2, 3, 4...

cn =
1

L

∫L
0

[
sin
(
(n+ 1)πx

L

)
− sin

(
(n− 1)πx

L

)]
dx

cn =
1

L

[
−L

(n+ 1)π
cos
(
(n+ 1)πx

L

)
+

L

(n− 1)π
cos
(
(n− 1)πx

L

)]∣∣∣∣L
0

cn =
−1

(n+ 1)π
[cos((n+ 1)π) − cos(0)] +

1

(n− 1)π
[cos((n− 1)π) − cos(0)]

cn =
−1

(n+ 1)π

[
(−1)n+1 − 1

]
+

1

(n− 1)π

[
(−1)n−1 − 1

]
cn =

2

π(n2 − 1)

[
(−1)n+1 − 1

]
, n = 2, 3, 4...

Which we could rewrite all of the cn (including c0 and c1) in the form:

cn =

{
0, n = odd

−4
π(n2−1)

, n = even

which are the coefficients of the solution:

u(x, t) =
c0
2

+

∞∑
n=1

cn cos
(nπx
L

)
e−(

nπa
L )

2
t

(b) If we look at our solution above, we see that we have a constant term in front, and all the other
terms have some sort of negative exponential in t attached to them. So as t → ∞, all of those
terms in the infinite sum will approach zero, leaving us with just the constant term. Formally,

lim
t→∞u(x, t) = lim

t→∞
[
c0
2

+

∞∑
n=1

cn cos
(nπx
L

)
e−(

nπa
L )

2
t

]
=
2

π
+

∞∑
n=1

cn cos
(nπx
L

)
lim
t→∞

[
e−(

nπa
L )

2
t

]

lim
t→∞u(x, t) = 2

π

is the steady state solution.
(c) At t = 0, the solution is given by the initial condition:

u(x, 0) = sin
(πx
L

)
Over time, the solution will then steadily converge towards the steady state solution:

lim
t→∞u(x, t) = 2

π

Because the ends are insulated, the total amount of heat (i.e. the average temperature) will remain
the same at all times t. So u(x, t) will start out with the initial condition, and then ”smooth out”
to the constant steady-state solution.
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Answer to Question 5. (a) We look for a solution of the form

u(x, y, t) = X(x)Y(y)T(t)

plugging this into the 2D wave equation, we get:

XYT ′′ = a2(X ′′YT + XY ′′T)

dividing both sides by XYT ,
T ′′

T
= a2

(
X ′′

X
+
Y ′′

Y

)
Since the left hand side depends only on t, and the right hand side does not depend on t, both
sides must be equal to the same constant λ:

T ′′

T
= a2

(
X ′′

X
+
Y ′′

Y

)
= λ

We can then use this to get an ODE for T(t):

T ′′ − λT = 0

We also have the equation

a2
(
X ′′

X
+
Y ′′

Y

)
= λ

We can then isolate the X terms, getting:

X ′′

X
=
λ

a2
−
Y ′′

Y

since the left hand side depends only on x, and the right hand side depends only on y, they both
must be equal to the same constant, which we will call µ:

X ′′

X
=
λ

a2
−
Y ′′

Y
= µ

Which we can rearrange into the following ODEs for X(x) and Y(y):

X ′′ − µX = 0

Y ′′ −

(
λ

a2
− µ

)
Y = 0

(b) We look for a solution of the form:

u(r, θ, t) = R(r)Θ(θ)T(t)

Plugging this into the PDE, we get:

RΘT ′′ = a2
(
R ′′ΘT +

1

r
R ′ΘT +

1

r2
RΘ ′′T

)
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Dividing everything by RΘT leaves:

T ′′

T
= a2

(
R ′′

R
+
1

r

R ′

R
+
1

r2
Θ ′′

Θ

)
Since the left hand side depends only on t, and the right hand side does not depend on t, both
sides must be equal to the same constant, which we will call λ:

T ′′

T
= a2

(
R ′′

R
+
1

r

R ′

R
+
1

r2
Θ ′′

Θ

)
= λ

From which we can isolate an ODE for T(t):

T ′′ − λT = 0

Now, we are still left with:

a2
(
R ′′

R
+
1

r

R ′

R
+
1

r2
Θ ′′

Θ

)
= λ

Multiplying everything by r2

a2
,

r2
R ′′

R
+ r

R ′

R
+
Θ ′′

Θ
=
r2λ

a2

Separating the r and θ terms,

r2
R ′′

R
+ r

R ′

R
−
r2λ

a2
=

−Θ ′′

Θ

Since the left hand side depends only on r, and the right hand side only on θ, they must equal the
same constant µ:

r2
R ′′

R
+ r

R ′

R
−
r2λ

a2
=

−Θ ′′

Θ
= µ

From which we can get ODEs for R(r) and Θ(θ):

Θ ′′ + µΘ = 0

r2R ′′ + rR ′ −

(
r2λ

a2
+ µ

)
R = 0

Answer to Question 6. (a) For the method of separation of variables, we look for solutions of the
form:

u(rθ) = R(r)Θ(θ)

Plugging this into Laplace’s equation in polar coordinates,

R ′′

R
+
1

r

R ′

R
+
1

r2
Θ ′′

Θ
= 0

Separating variables,
r2R ′′

R
+
rR ′

R
= −

Θ ′′

Θ

Since the left hand side depends only on r, and the right hand side only on θ, they both must be
equal to the same constant λ:

r2R ′′

R
+
rR ′

R
= −

Θ ′′

Θ
= λ
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We can use this to get the following ODEs for R(r) and Θ(θ):

Θ ′′ + λΘ = 0

r2R ′′ + rR ′ − λR = 0

In order for our solution to be well-defined in polar coordinates, we want to make sure that our
solution is the same when we increase θ by 2π, as this is just traveling around a circle back to the
same point. This means that u(r, θ) should be periodic in θwith period 2π.
More precisely, we need that for all angles θ:

u(r, θ) = u(r, θ+ 2π)

R(r)Θ(θ) = R(r)Θ(θ+ 2π)

Θ(θ) = Θ(θ+ 2π)

This will serve in the role of boundary conditions for our ODE for Θ(θ). In other words, we are
looking for non-trivial solutions to:

Θ ′′ + λΘ = 0, Θ(θ) = Θ(θ+ 2π)

For λ < 0, our solutions for Θ are of the form:

Θ(θ) = c1e
√
λθ + c2e

−
√
λθ

In order for this to be periodic,

Θ(θ) = Θ(θ+ 2π)

c1e
√
λθ + c2e

−
√
λθ = c1e

√
λ(θ+2π) + c2e

−
√
λ(θ+2π)

c1e
√
λθ + c2e

−
√
λθ = c1e

√
λθe2π

√
λ + c2e

−
√
λθe−2π

√
λ

and matching like terms, we would need that:

c1 = c1e
2π

√
λ and c2 = c2e

−2π
√
λ

This only happens when c1 = c2 = 0, which is the trivial solution.
For λ = 0, our solutions for Θ are of the form:

Θ(θ) = c1 + c2θ

In order for this to be periodic,

Θ(θ) = Θ(θ+ 2π)

c1 + c2θ = c1 + c2(θ+ 2π)

c1 + c2θ = c1 + c2(2π) + c2θ

0 = c2(2π)

c2 = 0

So c2 = 0, but c1 could be any constant. This means that Θ0(θ) = c1 works for any constant c1.
When λ = 0, the equation for R is:

r2R ′′ + rR ′ = 0
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This is an Euler equation, so looking for solutions of the form R = rm,

m(m− 1) +m = 0

m2 = 0

So we have a repeated root atm = 0. This corresponds to a solution of:

R0(r) = c1 + c2 ln(r)

Since the natural logarithm is not defined at the origin r = 0, if we want our solution u to be
defined at r = 0, we need to set c2 = 0, leaving:

R0(r) = c1

So for λ = 0, we have that R can also be any constant. Thus we have an eigenvalue-eigenfunction
pair of:

λ = 0, u0(r, θ) =
c0
2

where c0 could be any constant (I’m writing it this way since it will end up being useful later).
For λ > 0, our solutions for Θ are of the form:

Θ(θ) = A cos
(√
λθ
)
+ B sin

(√
λθ
)

In order for this to be periodic,

Θ(θ) = Θ(θ+ 2π)

A cos
(√
λθ
)
+ B sin

(√
λθ
)
= A cos

(√
λ(θ+ 2π)

)
+ B sin

(√
λ(θ+ 2π)

)
Using the angle addition trig identities, the right hand side becomes:

= A
[
cos
(√
λθ
)

cos
(
2π
√
λ
)
− sin

(√
λθ
)

sin
(
2π
√
λ
)]

+B
[
sin
(√
λθ
)

cos
(
2π
√
λ
)
+ sin

(
2π
√
λ
)

cos
(√
λθ
)]

Grouping together the terms by θ,

=
[
A cos

(
2π
√
λ
)
+ B sin

(
2π
√
λ
)]

cos
(√
λθ
)
+
[
B cos

(
2π
√
λ
)
−A sin

(
2π
√
λ
)]

sin
(√
λθ
)

Comparing like terms, A and B should satisfy the equations:

A = A cos
(
2π
√
λ
)
+ B sin

(
2π
√
λ
)

B = B cos
(
2π
√
λ
)
−A sin

(
2π
√
λ
)

This is always true for A = B = 0, but this corresponds to the trivial solution. However, for values
of λ where the cosine term above is 1 and the sine term is 0, this would be true for any A and B.
More precisely, we want the values of λwhere:

cos
(
2π
√
λ
)
= 1 =⇒ 2π

√
λ = 2πn, n = 1, 2, 3...

sin
(
2π
√
λ
)
= 0 =⇒ 2π

√
λ = πn, n = 1, 2, 3...
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Since we want both to be true, we take the more restrictive condition that:

2π
√
λ = 2πn, n = 1, 2, 3...
√
λ = n, n = 1, 2, 3...

λ = n2, n = 1, 2, 3...

So these are our eigenvalues, and they have corresponding eigenfunctions:

Θn(θ) = A cos (nθ) + B sin (nθ) , n = 1, 2, 3...

Now we want to solve for R(r) at these eigenvalues
(
λ = n2

)
. We get an Euler equation:

r2R ′′ + rR ′ − n2R = 0

Looking for solutions of the form R = rm, we plug this in and solve form:

m(m− 1) +m− n2 = 0

m2 − n2 = 0

m2 = n2

m = ±n

So R(r) looks like:
Rn(r) = Ar

n + Br−n

However, because we want R to be defined at r = 0, we then take B = 0, leaving:

Rn(r) = Ar
n

Putting this all together (and renaming some constants), our general solution is of the form:

u(r, θ) =

∞∑
n=0

Rn(r)Θn(θ)

u(r, θ) =
c0
2

+

∞∑
n=1

rn
[
An cos(nθ) + Bn sin(nθ)

]
Now we still have to apply the Neumann boundary conditions. Taking the partial derivative with
respect to r,

ur(r, θ) =

∞∑
n=1

nrn−1
[
An cos(nθ) + Bn sin(nθ)

]
Plugging in r = a, and setting it equal to f(θ)

ur(a, θ) =

∞∑
n=1

nan−1
[
An cos(nθ) + Bn sin(nθ)

]
= f(θ), 0 ≤ θ < 2π

This means that we want ur(a, θ) to match the Fourier series for f(θ) on the interval [0, 2π]. Using
the formula for Fourier series coefficients, we get the following equations for An and Bn:

nan−1An =
1

π

∫ 2π
0

f(θ) cos(nθ)dθ

nan−1Bn =
1

π

∫ 2π
0

f(θ) sin(nθ)dθ
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So our solution to the problem is:

u(r, θ) =
c0
2

+

∞∑
n=1

rn
[
An cos(nθ) + Bn sin(nθ)

]
where the coefficients are given by:

An =
1

nan−1π

∫ 2π
0

f(θ) cos(nθ)dθ

Bn =
1

nan−1π

∫ 2π
0

f(θ) sin(nθ)dθ

c0 = any constant

(b) In our solution to part (a) , when we were enforcing the boundary conditions on ur, we got to
an equation of the form:

ur(a, θ) =

∞∑
n=1

nan−1
[
An cos(nθ) + Bn sin(nθ)

]
= f(θ), 0 ≤ θ < 2π

and then went on to take a Fourier series expansion of f(θ). However, Fourier series usually have
a constant term c0

2 . While our formula for u(r, θ) had this, when we took the derivative, this then
makes sure that ur(r, θ) does not have a constant term.
So for this problem to be solvable, we would need the c0

2 constant term of the Fourier series for
f(θ) to be zero. Rephrasing this in terms of a condition on f,

1

π

∫ 2π
0

f(θ)dθ = 0
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