Math 2930 Worksheet Week 13
Wave Equation November 16th, 2017

Question 1. Consider the wave equation

2
A" Uxx = Ut

in an infinite one-dimensional medium subject to the initial conditions

u(x,0) =0
w(x,0) = g(x)

(a) Using the fact that the solution u(x, t) can be written in the form u(x,t) = F(x+at)+G(x—at),
show that:

F(x) + G(x)
aF'(x) —aG'(x) =

0
g(x)

(b) Use the equations from part (a) to show that
2aF'(x) = g(x)

and therefore that

where X is arbitrary.

(c) Show that



(d) Show that a
wix ) =5 | gl

x—at

Question 2. For the wave equation in an infinite one-dimensional medium

2
A Uxx = Uyt

We showed that the solution to the initial displacement problem is :

ut(tffi)o):i(g) =  uky= %(f(x — at) + f(x + at))

The previous question showed that the solution to the initial velocity problem is :

ulx ?) —0 . un= J et

=7 g(&)d¢g

x—at

Combine these two answers to show that the solution of the problem

azuxx = Utt
u(x,0) = f(x)
w(x,0) = g(x)

is

—_—

x+at
u(x,t) = (f(x—at)+f(x—|—at))+J g(&)d&

i 2(,1 x—at



Question 3. (*) A string is stretched and secured on the x-axis between the points x = 0 and x = 7.
If the transverse vibrations take place in a medium that imparts a resistance proportional to the
instantaneous velocity, then the wave equation describing the vibrations takes on the form

Uy = Ut + 220, O<A<T, t>0 (1)

A

(@) Changing the variable u to v = eu in Equation (1), find the differential equation for the

function v = v(x, t).

(b) Determine the displacement u(x, t) of the string at any time t > 0, provided the string starts
vibrating from rest with the initial displacement f(x).

[Hint: Use the result of Part (a) to simplify the initial boundary value problem in Part (b) .]



Question 4. Our derivation of d’Alembert’s formula:

u(x,t) = %(f(x —at) + f(x + at))

assumed an infinitely-long one-dimensional medium (i.e. —oco < x < c0).

However, many practical problems do not take place on an infinite domain, but instead on an
interval [0, L] with boundary conditions at x = 0 and x = L.

Now, suppose that we have a problem for the wave equation:
APy = Uy
and initial conditions
u(x,0) = f(x), ut(x,0) =0, 0<x<L

and boundary conditions
u(0,t) =0, u(l,t)=0

Let h(&) represent the initial displacement f in [0, L], extended into (—L,0) as an odd functinon,
and extended elsewhere as a periodic function of period 2L.
Show that:

u(x,t) = %(h(x —at) + h(x + at))

satsifies the wave equation, initial conditions and the boundary conditions.

This means that with this extension, the solution for the infinite string is also applicable to the
finite case.



Answer to Question 1. (a) Our solution can be written as:
u(x,t) = F(x + at) + G(x — at)
So plugging in t = 0, we get

u(x,0) =|F(x) + G(x) = 0]

if we calculate u; using the Chain Rule,

u(x,t) = aF'(x + at) — aG'(x — at)

Then plugging in t = 0, we get

w(x,0) =|aF'(x) —aG'(x) = g(x)

(b) The first (boxed) equation above for can be re-arranged to show
F(x) = —G(x)

Plugging this into the second equation, we get

2aF’(x) = g(x)

Then dividing both sides by 2a,
1

" 2a
and integrating both sides from x, to x, we get:

F'(x) g(x)

(c) Since F(x) = 2171 IX g(&)d& + F(xo) and F(x) = —G(x), we then get:

X0

Glx) = —J 9(£)dE — Flxo)

(d) We recall that our solution u(x, t) is:
u(x,t) = F(x + at) + G(x — at)
So plugging x + at and x — at into our formulas for F and G above,

u(x,t) = F(x + at) + G(x — at)

] x+at ] x—at
u(x,t)zj g(a)damm—J 9(£)dE — Flxo)

2a )y, 2a Jy,
0= [ g@ae+ [ gear
wt =g | eteant o | ol

x+at
Ul t) = 1[ ol£)dE

Za x—at




Answer to Question 2. Let v be the solution to the initial displacement problem, i.e.

v(x,t) = %(f(x —at) + f(x + at))
then we know that v satisfies:

e = v, V(x,0) =f(x),  vi(x,0)=0
Now let w be the solution to the initial velocity problem, i.e.

x+at
Wi t) = o | oea

B Z x—at
then we know that w satisfies:
azwxx = Wht, W(X» O) = O) Wt(x) O) = g(X)

Now we combine these two answers into:

—Y

u(x,t) =v(x, t) + w(x,t) = i(f(x —at) + f(x + at)) + 7a JXJrat g(&)d&

Then this solves the wave equation because:

2 2 2 2
AUy = A7 (V+ Wxx = QVxx + QWi = Vit + Wy = (V+ W) = Uy

It solves the first initial condition:
u(x,0) =v(x,0) + w(x,0) = f(x) + 0 = f(x)
and the second initial condition:
ut(x,0) =ve(x,0) +wi(x,0) =0+ g(x) = g(x)

A

Answer to Question 3. (a) Instead of working with v = eMu, it will actually be easier to work

with:

u=-eMy

Taking partial derivatives in x,

Uy =€ Vx

—At
Uxx = €~ Vxx

Taking partial derivatives in t using the Product Rule,

w = e My —Ae My

U = e My — 20e My + AZe My

The PDE in terms of u is:
Unx = Ugt + 2AUy



So plugging things in to get this in terms of v:

e My = e My — 206 My + Ae My + 22 (e*)‘tvt — )\e*?‘tv>

—A

e tvxX =e

tvtt o )\26—7\’[\)

Vxx = Vit — )\2\)

(b) In this problem, we will solve for v(x, t) using our equation from part (a) instead of u(x, t).
So our PDE is:
Vix = Vit — APV

Our boundary conditions on u are:
u(0,t) =u(mt) =0

so writing these in terms of v:

And our initial conditions on u are:
LL(X,O) = f(X), ug(x,0) =0
so writing these in terms of v:

u(x,0) = e®v(x,0) =

and

ug(x,0) = e%ve(x,0) — Av(x,0)e® = 0
vi(x,0) = Av(x, 0) = Af(x)

(Note: be careful that even though 1 is zero at t = 0, this is not true of vy)
Now for separation of variables. We look for solutions of the form

vix, t) = X(xJT(t)
Plugging this into our PDE and separating variables,

X'T =T"X — N XT
X// "
A X
X T
since the left hand side is a function of x only, and the right hand side is a function of t only, they
must both be equal to the same constant p:
X// 1!

i
X T H



Rearranging this into equations for X and T, we get:
X'—uX=0, T'—(u+N)T=0

Then the boundary values on v(x, t) become boundary values on X(x):

There are now three different cases we have to consider:
n>0, n=0, n<o

If © > 0, X(x) takes the form:

X(x) = creV* 4 cre VI
Plugging in the first boundary condition,

X0)=c1+c2=0
and plugging in the second boundary condition,
X(m) = creV* 4 cre VT =0

and the only way of satisfying both of these equations is if ¢c; = ¢, = 0, which leads to the trivial
solution of u = 0.

If u =0, X(x) takes the form:
X(x) =c¢1 4+ cox

Plugging in the first boundary condition,
X(0)=c;=0
and plugging in the second boundary condition,
X(m)=cy+cmt=0

and the only way of satisfying both of these equations is if ¢c; = ¢; = 0, which again leads to the
trivial solution of u = 0.

Now, if u < 0, then we can write p = — 2 for some «, and X(x) takes the form:
X(x) = ¢y cos(ox) + ¢o sin(ox)
Plugging in the first boundary condition,
X(0)=c1 =0
and plugging in the second boundary condition,
X(m) = ¢y sin(ort) =0
if c; = 0, we get the trivial solution u = 0, but we can get nontrivial solutions if:

sin(at) =0

anr=nn, n=1273..



Thus we get nontrivial solutions for X when:

A=-n’
Xn(x) = cn sin(nx)

For these values of A, we then get in our equation for T(t) that:
T+ M =A)T=0

Since A < 1 was stated in the problem, this means that n?> — A? is positive for all n, and so T(t)
takes on the form:
Ta(t) = ¢ cos ( n2 — )\Zt) + ¢y sin ( nZ— )\Zt>

So our fundamental solutions are:
vn(x, t) = Xn(x)Th(t) = sin(nx) (An cos ( n?— 7\2t> + By sin ( n?— 7\2t>)

And our general solution is:
v(x,t) = Z Cnvn(x,t) = Z Cn sin(nx) (An cos ( n? — 7\2t) + By, sin ( n? — ?\Zt)>
n=I n=I

Now we will have to find the coefficients A,, and B,, to match the initial conditions.
If we plug in t = 0, then we get:

v(x,0) = Z Apsin(nx) = f(x)

n=1

which means that A, are the coefficients of the sine series for f(x), so the A,,’s are given by:

An = ZJ f(x) sin(nx)dx
7T Jo

For the other initial condition, we get:
(o]
vi(x,0) = Z BaV N2 —AZsin(nx) = Af(x)
n=1
which means that v'n? — A?B,, are the coefficients of the sine series for Af(x), so the B,,s are given

by:
TU
vVn2 —ANB, = 2 J Af(x) sin(nx)dx

7T Jo

2A n
Bn = ———= | f(x)sin(nx)dx
" nmjo (x) sin(nx)

So with these coefficients, the solution of the PDE is:

u(x, t) = e My(x, t) = g cnosin(nx)e M <An cos ( n? — ?\Zt> + By sin ( n? — )\2t>>




Answer to Question 4. Since
1
u(x,t) = E(h(x —at) + h(x + at))

is in the form of F(x —at) 4+ G(x+ at), we have already shown that this satisfies the wave equation.
As for the initial conditions, if we plug in t = 0, we get:

u(x,0) = 5 (R(x) +h(x)) = hix)

which is equivalent to f(x) on the interval [0, L] by our process of creating h(x). So this initial
condition is satisfied.

For the second initial condition,
1
ue(x,0) = E(—ah/(x) +ah/(x)) =0

so this satisfies our second initial condition.

For the first boundary condition, we plug in x = 0
u(0,t) = %(h(—at) + h(at))
Since h(x) is odd by construction, this means that h(—at) = —h(at), and then:
u(0,t) = %(—h(at) +h(at)) =0

so the first boundary condition is always satisfied.

For the second boundary condition, we pluginx =L
u(l,t) = %(h(l_ —at) + h(L + at))

Since h(x) is periodic with period 2L by construction, it follows that h(L — at) = h(L — at — 2L)
and then:

u(L,t) = %(h(l_ —at—2L)+h(L+at)) = %(h(—l_ —at) + h(L+ at))
and since h(x) is odd by construction, this means that h(—L — at) = —h(L + at), and then:

u(lL,t) = %(—h(l_ +at)+h(L+at)) =0

so the second boundary condition is always satisfied.
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