
Math 2930 Worksheet
Wave Equation

Week 13

November 16th, 2017

Question 1. Consider the wave equation

a2uxx = utt

in an infinite one-dimensional medium subject to the initial conditions

u(x, 0) = 0

ut(x, 0) = g(x)

(a) Using the fact that the solution u(x, t) can be written in the form u(x, t) = F(x+at)+G(x−at),
show that:

F(x) +G(x) = 0

aF ′(x) − aG ′(x) = g(x)

(b) Use the equations from part (a) to show that

2aF ′(x) = g(x)

and therefore that
F(x) =

1

2a

∫x
x0

g(ξ)dξ+ F(x0)

where x0 is arbitrary.

(c) Show that

G(x) = −
1

2a

∫x
x0

g(ξ)dξ− F(x0)



(d) Show that

u(x, t) =
1

2a

∫x+at
x−at

g(ξ)dξ

Question 2. For the wave equation in an infinite one-dimensional medium

a2uxx = utt

We showed that the solution to the initial displacement problem is :

u(x, 0) = f(x)
ut(x, 0) = 0

=⇒ u(x, t) =
1

2
(f(x− at) + f(x+ at))

The previous question showed that the solution to the initial velocity problem is :

u(x, 0) = 0
ut(x, 0) = g(x)

=⇒ u(x, t) =
1

2a

∫x+at
x−at

g(ξ)dξ

Combine these two answers to show that the solution of the problem

a2uxx = utt

u(x, 0) = f(x)

ut(x, 0) = g(x)

is

u(x, t) =
1

2
(f(x− at) + f(x+ at)) +

1

2a

∫x+at
x−at

g(ξ)dξ
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Question 3. (*) A string is stretched and secured on the x-axis between the points x = 0 and x = π.
If the transverse vibrations take place in a medium that imparts a resistance proportional to the
instantaneous velocity, then the wave equation describing the vibrations takes on the form

uxx = utt + 2λut, 0 < λ < 1, t > 0 (1)

(a) Changing the variable u to v = eλtu in Equation (1), find the differential equation for the
function v = v(x, t).

(b) Determine the displacement u(x, t) of the string at any time t > 0, provided the string starts
vibrating from rest with the initial displacement f(x).

[Hint: Use the result of Part (a) to simplify the initial boundary value problem in Part (b) .]
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Question 4. Our derivation of d’Alembert’s formula:

u(x, t) =
1

2
(f(x− at) + f(x+ at))

assumed an infinitely-long one-dimensional medium (i.e. −∞ < x <∞).

However, many practical problems do not take place on an infinite domain, but instead on an
interval [0, L] with boundary conditions at x = 0 and x = L.

Now, suppose that we have a problem for the wave equation:

a2uxx = utt

and initial conditions

u(x, 0) = f(x), ut(x, 0) = 0, 0 ≤ x ≤ L

and boundary conditions
u(0, t) = 0, u(L, t) = 0

Let h(ξ) represent the initial displacement f in [0, L], extended into (−L, 0) as an odd functinon,
and extended elsewhere as a periodic function of period 2L.
Show that:

u(x, t) =
1

2
(h(x− at) + h(x+ at))

satsifies the wave equation, initial conditions and the boundary conditions.

This means that with this extension, the solution for the infinite string is also applicable to the
finite case.
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Answer to Question 1. (a) Our solution can be written as:

u(x, t) = F(x+ at) +G(x− at)

So plugging in t = 0, we get
u(x, 0) = F(x) +G(x) = 0

if we calculate ut using the Chain Rule,

ut(x, t) = aF
′(x+ at) − aG ′(x− at)

Then plugging in t = 0, we get

ut(x, 0) = aF ′(x) − aG ′(x) = g(x)

(b) The first (boxed) equation above for can be re-arranged to show

F(x) = −G(x)

Plugging this into the second equation, we get

2aF ′(x) = g(x)

Then dividing both sides by 2a,

F ′(x) =
1

2a
g(x)

and integrating both sides from x0 to x, we get:∫x
x0

F ′(ξ)dξ =
1

2a

∫x
x0

g(ξ)dξ

F(x) − F(x0) =
1

2a

∫x
x0

g(ξ)dξ

F(x) =
1

2a

∫x
x0

g(ξ)dξ+ F(x0)

(c) Since F(x) = 1
2a

∫x
x0
g(ξ)dξ+ F(x0) and F(x) = −G(x), we then get:

G(x) = −
1

2a

∫x
x0

g(ξ)dξ− F(x0)

(d) We recall that our solution u(x, t) is:

u(x, t) = F(x+ at) +G(x− at)

So plugging x+ at and x− at into our formulas for F and G above,

u(x, t) = F(x+ at) +G(x− at)

u(x, t) =
1

2a

∫x+at
x0

g(ξ)dξ+ F(x0) −
1

2a

∫x−at
x0

g(ξ)dξ− F(x0)

u(x, t) =
1

2a

∫x+at
x0

g(ξ)dξ+
1

2a

∫x0
x−at

g(ξ)dξ

u(x, t) =
1

2a

∫x+at
x−at

g(ξ)dξ
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Answer to Question 2. Let v be the solution to the initial displacement problem, i.e.

v(x, t) =
1

2
(f(x− at) + f(x+ at))

then we know that v satisfies:

a2vxx = vtt, v(x, 0) = f(x), vt(x, 0) = 0

Now let w be the solution to the initial velocity problem, i.e.

w(x, t) =
1

2a

∫x+at
x−at

g(ξ)dξ

then we know that w satisfies:

a2wxx = wtt, w(x, 0) = 0, wt(x, 0) = g(x)

Now we combine these two answers into:

u(x, t) = v(x, t) +w(x, t) =
1

2
(f(x− at) + f(x+ at)) +

1

2a

∫x+at
x−at

g(ξ)dξ

Then this solves the wave equation because:

a2uxx = a
2(v+w)xx = a

2vxx + a
2wxx = vtt +wtt = (v+w)tt = utt

It solves the first initial condition:

u(x, 0) = v(x, 0) +w(x, 0) = f(x) + 0 = f(x)

and the second initial condition:

ut(x, 0) = vt(x, 0) +wt(x, 0) = 0+ g(x) = g(x)

Answer to Question 3. (a) Instead of working with v = eλtu, it will actually be easier to work
with:

u = e−λtv

Taking partial derivatives in x,

ux = e
−λtvx

uxx = e
−λtvxx

Taking partial derivatives in t using the Product Rule,

ut = e
−λtvt − λe

−λtv

utt = e
−λtvtt − 2λe

−λtvt + λ
2e−λtv

The PDE in terms of u is:
uxx = utt + 2λut
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So plugging things in to get this in terms of v:

e−λtvxx = e
−λtvtt − 2λe

−λtvt + λ
2e−λtv+ 2λ

(
e−λtvt − λe

−λtv
)

e−λtvxx = e
−λtvtt − λ

2e−λtv

vxx = vtt − λ
2v

(b) In this problem, we will solve for v(x, t) using our equation from part (a) instead of u(x, t).
So our PDE is:

vxx = vtt − λ
2v

Our boundary conditions on u are:

u(0, t) = u(π, t) = 0

so writing these in terms of v:

e−λtv(0, t) = e−λtv(π, t) = 0

v(0, t) = v(π, t) = 0

And our initial conditions on u are:

u(x, 0) = f(x), ut(x, 0) = 0

so writing these in terms of v:

u(x, 0) = e0v(x, 0) = f(x)

v(x, 0) = f(x)

and

ut(x, 0) = e
0vt(x, 0) − λv(x, 0)e

0 = 0

vt(x, 0) = λv(x, 0) = λf(x)

(Note: be careful that even though ut is zero at t = 0, this is not true of vt)
Now for separation of variables. We look for solutions of the form

v(x, t) = X(x)T(t)

Plugging this into our PDE and separating variables,

X ′′T = T ′′X− λ2XT

X ′′

X
=
T ′′

T
− λ2

since the left hand side is a function of x only, and the right hand side is a function of t only, they
must both be equal to the same constant µ:

X ′′

X
=
T ′′

T
− λ2 = µ
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Rearranging this into equations for X and T , we get:

X ′′ − µX = 0, T ′′ − (µ+ λ2)T = 0

Then the boundary values on v(x, t) become boundary values on X(x):

X(0) = X(π) = 0

There are now three different cases we have to consider:

µ > 0, µ = 0, µ < 0

If µ > 0, X(x) takes the form:
X(x) = c1e

√
µx + c2e

−
√
µx

Plugging in the first boundary condition,

X(0) = c1 + c2 = 0

and plugging in the second boundary condition,

X(π) = c1e
√
µπ + c2e

−
√
µπ = 0

and the only way of satisfying both of these equations is if c1 = c2 = 0, which leads to the trivial
solution of u = 0.

If µ = 0, X(x) takes the form:
X(x) = c1 + c2x

Plugging in the first boundary condition,

X(0) = c1 = 0

and plugging in the second boundary condition,

X(π) = c1 + c2π = 0

and the only way of satisfying both of these equations is if c1 = c2 = 0, which again leads to the
trivial solution of u = 0.

Now, if µ < 0, then we can write µ = −α2 for some α, and X(x) takes the form:

X(x) = c1 cos(αx) + c2 sin(αx)

Plugging in the first boundary condition,

X(0) = c1 = 0

and plugging in the second boundary condition,

X(π) = c2 sin(απ) = 0

if c2 = 0, we get the trivial solution u = 0, but we can get nontrivial solutions if:

sin(απ) = 0
απ = nπ, n = 1, 2, 3...
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Thus we get nontrivial solutions for Xwhen:

λ = −n2

Xn(x) = cn sin(nx)

For these values of λ, we then get in our equation for T(t) that:

T ′′ + (n2 − λ2)T = 0

Since λ < 1 was stated in the problem, this means that n2 − λ2 is positive for all n, and so T(t)
takes on the form:

Tn(t) = c1 cos
(√

n2 − λ2t
)
+ c2 sin

(√
n2 − λ2t

)
So our fundamental solutions are:

vn(x, t) = Xn(x)Tn(t) = sin(nx)
(
An cos

(√
n2 − λ2t

)
+ Bn sin

(√
n2 − λ2t

))
And our general solution is:

v(x, t) =

∞∑
n=1

cnvn(x, t) =

∞∑
n=1

cn sin(nx)
(
An cos

(√
n2 − λ2t

)
+ Bn sin

(√
n2 − λ2t

))
Now we will have to find the coefficients An and Bn to match the initial conditions.
If we plug in t = 0, then we get:

v(x, 0) =

∞∑
n=1

An sin(nx) = f(x)

which means that An are the coefficients of the sine series for f(x), so the An’s are given by:

An =
2

π

∫π
0

f(x) sin(nx)dx

For the other initial condition, we get:

vt(x, 0) =

∞∑
n=1

Bn
√
n2 − λ2 sin(nx) = λf(x)

which means that
√
n2 − λ2Bn are the coefficients of the sine series for λf(x), so the Bn’s are given

by: √
n2 − λ2Bn =

2

π

∫π
0

λf(x) sin(nx)dx

Bn =
2λ

π
√
n2 − λ2

∫π
0

f(x) sin(nx)dx

So with these coefficients, the solution of the PDE is:

u(x, t) = e−λtv(x, t) =

∞∑
n=1

cn sin(nx)e−λt
(
An cos

(√
n2 − λ2t

)
+ Bn sin

(√
n2 − λ2t

))
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Answer to Question 4. Since

u(x, t) =
1

2
(h(x− at) + h(x+ at))

is in the form of F(x−at)+G(x+at), we have already shown that this satisfies the wave equation.
As for the initial conditions, if we plug in t = 0, we get:

u(x, 0) =
1

2
(h(x) + h(x)) = h(x)

which is equivalent to f(x) on the interval [0, L] by our process of creating h(x). So this initial
condition is satisfied.

For the second initial condition,

ut(x, 0) =
1

2
(−ah ′(x) + ah ′(x)) = 0

so this satisfies our second initial condition.

For the first boundary condition, we plug in x = 0

u(0, t) =
1

2
(h(−at) + h(at))

Since h(x) is odd by construction, this means that h(−at) = −h(at), and then:

u(0, t) =
1

2
(−h(at) + h(at)) = 0

so the first boundary condition is always satisfied.

For the second boundary condition, we plug in x = L

u(L, t) =
1

2
(h(L− at) + h(L+ at))

Since h(x) is periodic with period 2L by construction, it follows that h(L − at) = h(L − at − 2L)
and then:

u(L, t) =
1

2
(h(L− at− 2L) + h(L+ at)) =

1

2
(h(−L− at) + h(L+ at))

and since h(x) is odd by construction, this means that h(−L− at) = −h(L+ at), and then:

u(L, t) =
1

2
(−h(L+ at) + h(L+ at)) = 0

so the second boundary condition is always satisfied.
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