
Math 2930 Worksheet
BVPs, Fourier Series

Week 11

November 2nd, 2017

Question 1. (*) Consider the function f(x) defined by:

f(x) = −1, −2 ≤ x < 0
f(x) = 0, 0 ≤ x < 2

f(x+ 4) = f(x)

(a) Sketch f(x) for several periods

(b) Without doing any calculations, to what value does the Fourier series of f(x) converge at x = π?

(c) Find the Fourier series for f(x)



Question 2. (*) Solve the two-point boundary value problem

y ′′ + 3y = cos(x), y ′(0) = 0, y ′(π) = 0
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Question 3. (*) Solve the eigenvalue problem

y ′′ + λy = 0

subject to the constraints y(0) = y(π) = y(2π/3) = 0, λ > 0.
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Question 4. In solving certain PDE problems using separation of variables, you need to expand a
given function f(x) defined on [0, L] as a sum of sine functions with odd indices only:

sin
(πx
2L

)
, sin

(
3πx

2L

)
, sin

(
5πx

2L

)
, ...

This question is meant to help walk you through that process.

(a) To do this, f should first be extended into (L, 2L) so that it is symmetric about x = L. Let
the resulting function be extended into (−2L, 0) as an odd function and elsewhere as a periodic
function of period 4L (see picture below).

Show that this new function has a Fourier series in terms of

f(x) =

∞∑
n=1

bn sin
(
(2n− 1)πx

2L

)
where

bn =
2

L

∫L
0

f(x) sin
(
(2n− 1)πx

2L

)
dx

(b) How should a function f defined on [0, L] be extended so as to obtain a Fourier series involving
only the functions:

cos
(πx
2L

)
, cos

(
3πx

2L

)
, cos

(
5πx

2L

)
, ...?
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Answer to Question 1. (a) Here is a graph of f(x):

(b) Since f(x) is continuous at x = π (denoted by the blue dot in the picture above), the Fourier
Series for f converges to the value f(x), which is just -1.
In terms of equations,

lim
N→∞

[
a0
2

+

N∑
n=1

an cos
(
nπ2

2

)
+ bn sin

(
nπ2

2

)]
= −1

(Note: just the first sentence here would be a sufficient answer on a quiz/exam)

(c) For this problem, L = 2. Using the formulas for the Fourier series coefficients:

a0 =
1

L

∫L
−L
f(x)dx =

1

2

∫ 0
−2

−1dx+
1

2

∫ 2
0

0dx = −1

an =
1

2

∫ 2
−2
f(x) cos

(nπx
2

)
dx =

1

2

∫ 0
−2

− cos
(nπx
2

)
dx

an =
−1

2

[
2

nπ
sin
(nπx
2

)]0
−2

=
−1

nπ
[sin(0) − sin(nπ)] = 0

bn =
1

2

∫ 2
−2
f(x) sin

(nπx
2

)
dx =

1

2

∫ 0
−2

− sin
(nπx
2

)
dx

bn =
1

2

[
2

nπ
cos
(nπx
2

)]0
−2

=
1

nπ

[
cos(0) − cos(−nπ)

]
bn =

1− (−1)n

nπ
=

{
2
nπ , n odd
0, n even
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So this Fourier series can be written as:

f(x) =
−1

2
+
∑
n odd

2

nπ
sin
(nπx
2

)
=

−1

2
+

∞∑
n=1

2

(2n− 1)π
sin
(
(2n− 1)πx

2

)

Answer to Question 2. The homogeneous equation is just

y ′′ + 3y = 0

solving the characteristic polynomial for r,

r2 + 3 = 0

r2 = −3

r = ±
√
3i

The corresponding homogeneous solution is:

yh(x) = c1 cos
(√
3x
)
+ c2 sin

(√
3x
)

For the particular solution, we guess a solution of the form

Y(x) = A cos(x)

(we could also add a B sin(x) term, but we won’t need one because there are only even-order
derivatives in this problem.)
Taking derivatives,

Y(x) = A cos(x)
Y ′(x) = −A sin(x)
Y ′′(x) = −A cos(x)

and plugging this into the original equation,

Y ′′ + 3Y = cos(x)
(−A cos(x)) + 3(A cos(x)) = cos(x)

2A cos(x) = cos(x)

A =
1

2

So the particular solution is

Y(x) =
1

2
cos(x)

Combining the homogeneous and particular solutions, we get the general solution:

y(x) = yh(x) + Y(x) = c1 cos
(√
3x
)
+ c2 sin

(√
3x
)
+
1

2
cos(x)
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Taking the derivative,

y ′(x) = −
√
3c1 sin

(√
3x
)
+
√
3c2 cos

(√
3x
)
−
1

2
sin(x)

Now that we have the general solution, we can plug in the boundary conditions:

y ′(0) = 0+
√
3c2(1) − 0 =

√
3c2 = 0

c2 = 0

y ′(π) = −
√
3c1 sin

(√
3π
)
−
1

2
sin(π)

Since sin(
√
3π) 6= 0, this means that c1 = 0 as well.

Therefore the solution to the boundary value problem is just the particular solution:

y(x) =
1

2
cos(x)

Answer to Question 3. The general solution to the equation is:

y(x) = c1 cos
(√
λx
)
+ c2 sin

(√
λx
)

Plugging in the first boundary condition of y(0) = 0,

y(0) = c1 cos(0) + c2 sin(0) = c1 = 0

so the solution looks like
y(x) = c2 sin

(√
λx
)

Plugging in the second and third boundary condition of y(2π/3) = y(π) = 0,

y(2π/3) = c2 sin
(√

λ
2π

3

)
= 0

y(π) = c2 sin
(√
λπ
)
= 0

If c2 = 0, then this is just the trivial solution.
So in order to have nontrivial solutions, we need that both

sin
(√

λ
2π

3

)
, sin

(√
λπ
)

are simultaneously zero. This happens when

2
√
λ

3
is an integer, and

√
λ is an integer

(but not necessarily the same integer)
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This happens if and only if
√
λ is a multiple of 3, i.e.

√
λ = 3n, n = 1, 2, 3, ...

Squaring both sides, we get that the eigenvalues are:

λn = 9n2, n = 1, 2, 3, ...

with the corresponding eigenfunctions

yn = c2 sin (3nx)

where c2 can be any constant.

Answer to Question 4. (a) Since the given extension of the function is even, we know that an = 0
for every n, and the function can be written as a sum of sine functions only.
Calculating the coefficients of these sine terms (using the fact that f is odd):

bn =
1

2L

∫ 2L
−2L

f(x) sin
(nπx
2L

)
dx

=
2

2L

∫ 2L
0

f(x) sin
(nπx
2L

)
dx

=
1

L

∫ 2L
0

f(x) sin
(nπx
2L

)
dx

We can take advantage of the additional symmetry in this problem by breaking down this integral
into two pieces, one from 0 to L and the other from L to 2L as follows:

bn =
1

L

∫L
0

f(x) sin
(nπx
2L

)
dx+

1

L

∫ 2L
L

f(x) sin
(nπx
2L

)
dx

Now, for even values of n, the way we have extended f so that it is symmetric about Lmakes sure
that these two integrals cancels out. (See the picture below)
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The (even-indexed) sine function is in blue and the extension of f is in red. Looking at this picture,
you can see that sin is odd about x = L, and f is even about x = L, so bn will be the integral from
0 to 2L of a function that is odd about x = L.
In other words, the integral from 0 to L and the integral from L to 2L above will cancel each other
out:

bn =
1

L

∫L
0

f(x) sin
(nπx
2L

)
dx+

1

L

∫ 2L
L

f(x) sin
(nπx
2L

)
dx = 0

Thus bn = 0when n is even.

Now, if n is odd, the picture looks something like:

Now we see that everything is perfectly symmetric about x = L, so these two integrals will equal
the same value:

bn =
1

L

∫L
0

f(x) sin
(nπx
2L

)
dx+

1

L

∫ 2L
L

f(x) sin
(nπx
2L

)
dx

=
2

L

∫L
0

f(x) sin
(nπx
2L

)
dx

So the bn coefficients are given by:

bn =

{
0, n even
2
L

∫L
0 f(x) sin

(
nπx
2L

)
dx, n odd
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Putting this all together, the Fourier series expansion of f(x) is:

f(x) =

∞∑
n=1

bn sin
(nπx
2L

)
=
∑
n odd

[
2

L

∫L
0

f(x) sin
(nπx
2L

)
dx

]
sin
(nπx
2L

)
=

∞∑
n=1

[
2

L

∫L
0

f(x) sin
(
(2n− 1)πx

2L

)
dx

]
sin
(
(2n− 1)πx

2L

)

so it only has the sin
(
(2n−1)πx

2L

)
terms as desired.

(b) To get only the odd-indexed cosine functions in our Fourier series, we can repeat a similar
extension to the one in part (a) .
We can extend f(x) from [0, L] to [−2L, 2L] as follows:

• Extend f to [0, 2L] so that it is odd around x = L

• Extend this to [−2L, 2L] so that it is even around x = 0

The resulting extension is illustrated by the following image:

Repeating similar arguments from (a) , but with even and odd switched, we can get that this
results in a Fourier series with only the desired cosine terms.
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