
Math 2930 Worksheet
Prelim 2 Review

Week 10

October 26th, 2017

Question 1. (*) Determine the general solution of

y ′′ + λ2y =

N∑
m=1

am sin(πmt)

where λ > 0 and λ 6= mπ form = 1, ...,N



Question 2. (*) For the ODE:

x2
d2y

dx2
+ x

dy

dx
+ λy = 0

(a) Find the general solution for λ > 0
(b) (Just to be clear: this part would not be fair game for Prelim 2 this semester, but we should have covered
everything you need to solve it in class already.)
Find the eigenvalues λwhich satisfy the following BC:

y(1) = 0 and y(2) = 0
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Question 3. (*) Find the general solution of the differential equation

y ′′ − y ′ +
1

4
y = 3+ et/2
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Question 4. (*) A mass of 1 kg stretches a spring 8 cm. The mass is first pushed upward, contract-
ing the spring a distance of 2 cm, and then set in motion with a downward velocity of 60 cm/s.
Assuming that there is no damping and no external force is applied,

(a) Find the position u(t) of the mass at any time t

(b) Determine the period, frequency and the amplitude of the motion
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Question 5. (*) Using the method of variation of parameters, find the general solution of the dif-
ferential equation

y ′′ + 4y ′ + 4y = t−2e−2t, t > 0

(if this were on the prelim, you would also be given something like the following formulas)
Variation of Parameters: Ly = g, y = u1y1 + u2y2

u1 = −

∫
y2g

W
dt, u2 = +

∫
y1g

W
dt, whereW = y1y

′
2 − y2y

′
1
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Question 6. (*) Find the solution of the initial value problem

y ′′′ − y ′′ + y ′ − y = 0, y(0) = 2, y ′(0) = −1. y ′′(0) = −2
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Answer to Question 1. For the homogenous solution, we write down the characteristic equation,
and solve for r:

r2 + λ2 = 0

r2 = −λ2

r = ±λi

So the homogenous solution is:

yh(t) = c1 cos(λt) + c2 sin(λt)

Now, since our equation is linear, we can find a particular solution for each term in the right hand
side individually, and then add them together. In other words, if Ym(t) is a particular solution of

y ′′ + λ2y = am sin(πmt)

then Y(t) =
∑n
m=1 Ym(t) is a particular solution of:

y ′′ + λ2y =

N∑
m=1

am sin(πmt)

So we’ll just find a particular solution Ym for am sin(mπt) first.
To do that, we guess a Ym of the form:

Ym(t) = Bm cos(mπt) + Cm sin(mπt)

Taking derivatives,

Y ′
m(t) = −mπBm sin(mπt) +mπCm cos(mπt)

Y ′′
m(t) = −m2π2Bm cos(mπt) −m2π2Cm sin(mπt)

So plugging our guess for Ym into the original equation,

Y ′′
m + λ2Ym = am sin(mπt)

−m2π2Bm cos(mπt) −m2π2Cm sin(mπt) + λ2Bm cos(mπt) + λ2Cm sin(mπt) = am sin(mπt)

(λ2 −m2π2)Bm cos(mπt) + (λ2 −m2π2)Cm sin(mπt) = am sin(mπt)

So that gives us two equations for Bm and Cm:

(λ2 −m2π2)Bm = 0

(λ2 −m2π2)Cm = am

The solution to this system is:

Bm = 0, Cm =
am

λ2 −m2π2

So our particular solution Ym is:

Ym(t) =
am

λ2 −m2π2
sin(mπt)
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Adding these all together, our whole particular solution Y(t) is:

Y(t) =

N∑
m=1

ym(t) =

N∑
m=1

am

λ2 −m2π2
sin(mπt)

Then we add the homogenous and particular solutions together to get the general solution:

y(t) = yh(t) + Y(t) = c1 cos(λt) + c2 sin(λt) +
N∑
m=1

ym(t) =

N∑
m=1

am

λ2 −m2π2
sin(mπt)

Answer to Question 2. (a) Since this is an Euler equation, we guess an answer of the form y = xr

for some unknown power r. Plugging this in,

x2r(r− 1)xr−2 + xrxr−1 + λxr = 0

r(r− 1)xr + rxr + λxr = 0[
r(r− 1) + r+ λ

]
xr = 0

So our characteristic equation is:
r2 + λ = 0

Since λ > 0, the roots are imaginary:
r = ±

√
λi

This corresponds to a general solution of:

y(x) = c1 cos
(√
λ ln(x)

)
+ c2 sin

(√
λ ln(x)

)

(b) Plugging in the first boundary condition,

y(1) = c1 cos
(√
λ ln(1)

)
+ c2 sin

(√
λ ln(1)

)
= 0

c1 cos(0) + c2 sin(0) = 0
c1 = 0

Plugging in the second boundary condition,

y(2) = c1 cos
(√
λ ln(2)

)
+ c2 sin

(√
λ ln(2)

)
= 0

c2 sin
(√
λ ln(2)

)
= 0

One way of satisfying this boundary condition is to set c2 = 0, but then we’re just left with the
trivial solution y = 0.
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However, we can have nontrivial solutions if:

sin
(√
λ ln(2)

)
= 0

√
λ ln(2) = nπ, n = 1, 2, 3, ....

λ =
n2

ln(2)2
, n = 1, 2, 3, ....

So the eigenvalues are:

λn =
n2

ln(2)2
, n = 1, 2, 3, ....

with corresponding eigenfunctions:

yn(x) = c2 sin
(√
λ ln(x)

)
yn(x) = c2 sin

(
n ln(x)
ln(2)

)
where c2 can be any constant
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Answer to Question 3. First the solution to the homogenous equation.

r2 − r+
1

4
= 0(

r−
1

2

)2
= 0

r =
1

2
,

1

2
(repeated)

So the homogenous part of the solution is:

yh(t) = c1e
t/2 + c2te

t/2

Since et/2 shows up twice in our homogenous solution, we guess a particular solution of the form:

Y(t) = At2et/2 + B

taking derivatives,

Y ′(t) =

(
A

2
t2 + 2At

)
et/2

Y ′′(t) =

(
A

4
t2 + 2At+ 2A

)
et/2

Plugging this into the original equation,

Y ′′ − Y ′ +
1

4
Y =

[(
A

4
t2 + 2At+ 2A

)
−

(
A

2
t2 + 2At

)
+
1

4
(At2)

]
et/2 +

B

4
= 3+ et/2

[
0t2 + 0t+ 2A

]
et/2 +

B

4
= 3+ et/2

2Aet/2 +
B

4
= 3+ et/2

2A = 1,
B

4
= 3

A =
1

2
, B = 12

So the particular solution is:

Y(t) =
1

2
t2et/2 + 12

and the general solution is:

y(t) = yh(t) + Y(t) = c1e
t/2 + c2te

t/2 +
1

2
t2et/2 + 12
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Answer to Question 4. Note: I will do this problem entirely in meters. It’s possible to do this all in
centimeters, but you then have to remember to convert the gravitational constant g into centimeters per
second squared. Also, I’ll use g = 10m/s, but g = 9.8m/s is certainly acceptable as well, it will just result
in slightly different answers.
(a) To find the spring constant, we’ll use the information in the first sentence. A mass of 1 kg
stretching a spring 8cm means that the weight of the mass is equal to the spring force:

mg = kx

(1kg)(10m/s2) = k(0.08m)

k =
10m/s2

0.08m
= 125N/m

Since there is no damping, and no external force, the position u(t) of the mass satisfies the follow-
ing equation:

mu ′′ + ku = 0

Solving the characteristic equation,

mr2 + k = 0

r2 = −
k

m

r = ±
√
k

m
i

So the general solution is:

u(x) = c1 cos

(√
k

m
t

)
+ c2 sin

(√
k

m
t

)
Plugging in the initial conditions (converted to meters),

u(0) = c1 = 0.02

u ′(0) = c2

√
k

m
= −0.6

So the coefficients are:

c1 = 0.02, c2 = −0.6

√
m

k

giving a solution of

u(x) = 0.02 cos

(√
k

m
t

)
− 0.6

√
m

k
sin

(√
k

m
t

)
Plugging in the values ofm = 1kg and k = 125N/m, the solution is:

u(x) = 0.02 cos
(
5
√
5t
)
−
0.6

5
√
5

sin
(
5
√
5t
)

(b) From the answer to part (a) , we see that the radial frequency is:

ω = 5
√
5rad/s
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the period is

T =
2π

ω
=
2π

5
√
5
s

and the amplitude is

R =

√
(0.02)2 +

(
−0.6

5
√
5

)2
=
0.02
√
41

5
m

Answer to Question 5. First, we solve the homogenous equation:

y ′′ + 4y ′ + 4y = 0

r2 + 4r+ 4 = 0

(r+ 2)2 = 0

r = −2, −2 (repeated)

So the homogenous solution is given by:

y1(t) = e
−2t, y2(t) = te

−2t

We calculate the Wronskian:

W[y1, y2](t) = y1y
′
2 − y2y

′
1

= e−2t
(
e−2t − 2te−2t

)
+ 2e−2t

(
te−2t

)
= e−4t

Now we can calculate u1 and u2 using our formulas for variation of parameters:

u1 = −

∫
te−2tt−2e−2t

e−4t
dt = −

∫
1

t
dt = − ln(t) + C1

u2 =

∫
e−2tt−2e−2t

e−4t
dt =

∫
1

t2
dt =

−1

t
+ C2

So our general solution is:

y(t) = u1(t)y1(t) + u2(t)y2(t)

y(t) = (− ln(t) + C1) e−2t +
(
−1

t
+ C2

)
te−2t

which simplifies to:

y(t) = c1e
−2t + c2te

−2t − ln(t)e−2t
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Answer to Question 6. To find the general solution, we find the roots of the characteristic equation:

y ′′′ − y ′′ + y ′ − y = 0

r3 − r2 + r− 1 = 0

(r2 + 1)(r− 1) = 0

r = ±i, 1

so the corresponding general solution is:

y(t) = c1 cos(t) + c2 sin(t) + c3et

Plugging in the initial conditions, we get a system of equations for c1, c2, c3:

y(0) = c1 + c3 = 2

y ′(0) = c2 + c3 = −1

y ′′(0) = −c1 + c3 = −2

The solution to this system of equations is

c1 = 2, c2 = −1, c3 = 0

So the solution to the initial value problem is then

y(t) = 2 cos(t) − sin(t)
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