
Math 2930 Worksheet
Introduction to Differential Equations

Week 1

August 24, 2017

Question 1. Is the function y = 1+ t a solution to the differential equation dy
dt = y2−1

t2+2t
?

How about the function y = 1+ 2t?
How about y = 1?
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Question 2. Differential equations are often used to model population growth, say of the num-
ber of fish in a lake as a function of time. Let’s simplify the situation by making the following
assumptions:

• There is only one species (e.g. fish)

• The species has been in its habitat (e.g. a lake) for some time prior to what we call t = 0

• The species has access to unlimited resources (e.g. food, space, water)

• The species reproduces continuously

Given these assumptions, sketch three possible graphs of population versus time: one starting at
P = 10, one starting at P = 20, and the third starting at P = 30.

(a) For your graph starting with P = 10, how does the slope vary as time increases?

(b) For a set P value, say P = 30, how do the slopes vary across the three graphs you drew?
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Question 3. The situation in Question 2 can be modeled with a differential equation of the form
dP
dt = something. Here are some possible equations someone might use to try and model this
situation. For each one, come up with reasons for why they do or don’t accurately model the
problem.

• dP
dt = (t+ 1)2

• dP
dt = 2P

• dP
dt = Cet

• dP
dt = 2t

• dP
dt = P2 + 1

Question 4. Below are two systems of differential equations. In both of these systems, x and y refer
to the population of two different species at time t. Which system describes a situation where the
two species compete? Which system describes cooperative species? Explain your reasoning.

(i)
dx

dt
= −5x+ 2xy, (ii)

dx

dt
= x− 2xy

dy

dt
= −4y+ 3xy,

dy

dt
= 2y− xy
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Question 5. The differential equation

dy

dt
= r

(
1−

y

K

)
y

where r and K are positive constants, is an example of what is known as a logistic equation. These
are usually used to model the population y of some species in an environment with limited re-
sources as a function of time t.
(a) If we start with some initial population y(0) > 0, what can you say about the qualitative
behavior of y(t) will be as t increases? By qualitative I mean try to explain using words instead of
numbers or equations where possible, but still try to be specific.
Hint: Does y approach a limit as t → ∞? If so, what is this limiting value? How does this depend
on r and K, if at all?

(b) Now suppose we introduce some sort of predation by a fixed number of predators. Then we
could model this system with:

dy

dt
= r

(
1−

y

K

)
y− Ey

where E is another positive constant. What can you say about the qualitative behavior of y(t) this
time? As t → ∞, does the population still approach a non-zero value or is it driven to extinction
(i.e. y → 0)? How does this depend on E, if at all?
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Answer to Question 1. To check whether these are solutions, we plug the given functions y(t) into
both sides of the differential equation and check that they are equal.
For y = 1+ t, we get dy

dt = d
dt

[
1+ t

]
= 1 and

y2 − 1

t2 + 2t
=

(1+ t)2 − 1

t2 + 2t
=

t2 + 2t

t2 + 2t
= 1

since these two quantities are equal, y(t) = 1+ t is a solution of the differential equation.
For y = 1+ 2t, we get dy

dt = 2, but y2−1
t2+2t

= 4t2+4t
t2+2t

6= 2, so this is not a solution.

For y = 1, we get dy
dt = 0 and y2−1

t2+2t
= 0, so this is another solution.

Answer to Question 2.
Your graphs could look something like this:
(Note: They should be exponential, not parabolic)

(a) For the graph starting with P = 10, the slope increases as time increases. This makes sense,
since more fish implies more reproduction, which implies a larger growth rate.
(b) For a set P value, the slope stays the same across the three graphs. This is because the slope of
the graph is the rate of change dP

dt . Since the growth rate of the population depends only on the
number of fish, not the time of day, it should be the same on all three graphs.

Answer to Question 3.
The rate of change dP

dt should be a function of only the size of the population P, and not on the time
t. For similar reasons to (2b), the rate of change is determined by the number of fish there are right
now, not what time of day it is. This rules out all but the 2nd and 5th options. Note: When they
first see this problem, many students are tempted to put dP

dt = something involving t, because the
rate is increasing in time. But since P is itself a function of t, this means dP

dt depends implicitly on
the value of t, so dP

dt can still be increasing in time even without depending explicitly on it.
We can also rule out the 5th option using a sanity check of plugging in P = 0. Since P = 0 is the
case where there are no fish, any reasonable model would also necessarily have dP

dt = 0, otherwise
fish are being created out of nowhere. Since the fifth model would instead say dP

dt = 1 > 0, this
model does not make sense.
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dP
dt should really depend linearly on P since increasing the number of fish by a constant factor
would result in increasing reproduction by that exact same constant factor. I.e. if you have three
as many fish parents you should have three times as many fish babies. This leaves dP

dt = 2P as the
only good model.

Answer to Question 4.
Here the terms that correspond to the interaction of the two species are those with both x and y.
Whether the interactions are cooperative or competitive depends on the sign of the xy term.
Since (i) has positive coefficients in front of the xy terms, that means increasing the populations
of both x and y have a positive effect on the rate at which both populations grow. This would
correspond to the case of two cooperative species.
Similarly, since (ii) has negative coefficients in front of the xy terms, it means that increasing the
numbers of x or y would have a negative effect on the rate of change of both species. This would
correspond to the case of two competitive species.

Answer to Question 5.
(a) In looking for the qualitative behavior of solutions, it’s often best to look at the sign of dy

dt

and how it changes. Here, we see that both the r and y terms are positive, so the sign of dy
dt is

determined by the sign of 1− y
K .

This means that is y > K, then dy
dt < 0, or in other words that any solution above the line y = K

will be decreasing.
If y = K, then dy

dt = 0, which means that the constant function y(t) = K is in fact a solution. This is
called an equilibrium solution of the differential equation.
If 0 < y < K, then dy

dt > 0, so any solution below the line y = K will be increasing.
Putting this all together, this means that any solution starting below y = K will increase asymp-
totically up towards the limit y = K as t → ∞. Similarly, any solution starting above y = K will
decrease asymptotically towards K, while the solution starting at K will remain there. So no mat-
ter what the initial population y(0) is, it will approach the limit of K when t → ∞. In population
growth models, K functions here as the carrying capacity. Note that the constant r doesn’t affect
the limiting value of y, just the rate at which solutions approach the limit K.
If this is confusing, don’t worry, we’ll go over more problems like this in Section 2.5

(b) This part works similarly to part a. Now, we can rearrange the terms as:

dy

dt
= r

(
1−

y

K
−

E

r

)
y

Now we see that the sign of dy
dt depends purely upon the sign of 1− y

K − E
r .

First, if E ≥ r, then 1 − E/r < 0, so this term is always negative for any y > 0. This means that
dy
dt will always be negative, and so all solutions y(t) will eventually decrease to the limit of 0 as
t → ∞, i.e. the population will go extinct.
However, if E < r (i.e. if there is less predation), then we calculate that dy

dt = 0 when

1−
y

K
−

E

r
= 0

which we can solve for y as:

y = K

(
1−

E

r

)
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This quantity is the new carrying capacity: Any population y starting at this equilbrium value will
stay there for all times t since dy

dt = 0

We can further see that if y > K(1 − E/r), then dy
dt < 0, so all solutions starting above this value

will decrease asymptotically to this new carrying capacity. Similarly, all solutions starting below
y = K(1− E/r), will increase asymptotically up to this new carrying capacity.
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