Math 2930 Discussion Notes Week 9
Resonance, BVPs October 19th, 2017

1 Resonance
Let’s consider an undamped forced oscillator:

y"+ wpy =Focos(wt),  y(0) =y'(0) =0
The homogenous solution is:

yYn(t) = ¢y cos(wot) + ¢z sin(wot)

In this case, we guess a particular solution of the form:
Y(t) = A cos(wt) + Bsin(wt)
Plugging it into the original equation,

Y" + wdY = Fy cos(wt)
—w?A cos(wt) + —w?B sin(wt) + w%A cos(wt) + wéB sin(wt) = Fy cos(wt)

[Aw% — sz] cos(wt) + [Bwé — sz] sin(wt) = Fo cos(wt)

Giving us the system of equations:

So

So our particular solution is

and the corresponding general solution is:

y(t) = yn(t) + Y(t) = ¢ cos(wot) + ¢ sin(wopt) + ZL cos(wt)

— w2
Wy w



Plugging in the initial conditions to find ¢y and ¢;,

c;=0

So the solution to this initial value problem is:

Fo

5 5 cos(wt) — cos(wot)

An example graph of such a solution would be:

We see that this function has a sort of “amplitude” of szF(ZUz , represented by the dashed blue

lines above.

We see that as w — wy, this “amplitude” increases to co. This essentially means that ex-
ternal forcing produces a stronger response when the forcing frequency w is closer to the natural
frequency wy.

What happens when w = wy exactly? This special case is what is known as resonance, and
wy is often referred to as the resonant frequency of the system.
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If w = wy, then we have to guess a particular solution of the form:
Y(t) = t[A cos(wot) + B sin(wot)]

where we have added an extra power of t to ensure that the particular solution is not contained in
the homogenous solution.



We calculate its derivatives:

Y' = (A cos(wot) + Bsin(wgt)) 4+ t(—Awp sin(wot) + Bwg cos(wot))

Y = (—2Awy sin(wot) + 2Bwg cos(wot)) + t(—Awd cos(wpt) — Bwj sin(wot)
Plugging it into the left hand side of the equation,
Y" + wdY = —2Awp sin(wot) + 2Bwy cos(wot) = Fy cos(wpt)
Solving for A and B:

F
A:O, B:T(f)o

resulting in a particular solution of
F .
Y=_2¢ sin(wot)
Zwo
and a general solution of

F )
y(t) = yn(t) + Y(t) = ¢ cos(wot) 4 ¢ sin(wot) + ﬁt sin(wot)
0

Plugging in the initial conditions,

y(0)=c1 =0
y'(0) = cowp =0
so the solution to the IVP is:
F
y(t) 2730‘( sin(wqt)

Where we see that y becomes unbounded as t — oo.

So the main point of these examples is that as the forcing frequency (w) approaches the
natural frequency (wy), the system exhibits a stronger response, eventually becoming unbounded
at resonance when the forcing frequency w is exactly the same as the natural frequency wsy.

Note: While the examples here were undamped, similar ideas hold for the damped case.



2 Boundary Value Problems: A Linear Algebra Perspective

So by this point, we should be pretty used to initial value problems, which might look something
like:
ay”+by’ +cy=0, y0)=d, y'(0)=e (1)

The basic idea is that we find the general solution in the form:
y(x) = c1yi(x) + caya(x)

Then we find ¢ and ¢, by plugging in the initial conditions, giving a system of 2 linear equations
on 2 unknowns:

191(0) +c2y2(0) = d
=e

C1y1
c1y7(0) + c2y5(0)

rewriting this system of equations in matrix form,

[U](O) y2(0) ] [m]:[d]
y1(0) y5(0) c2 e

If we compute the determinant of this matrix, we get the Wronskian evaluated at x = 0:

det = y1(0)y3(0) —y1(0)y2(0) = Wly1,421(0)

and it turns out that this Wronskian (i.e. the determinant) is never zero, so this system of equations
always has a unique solution (c1, ¢;). However, for boundary value problems, this may not always
be the case.

An example boundary value problem might look something like:

ay” + by’ +cy =0, y(0) =4, y(L)=e 2)

Note that Equation (2) is in almost exactly the same form as Equation (1). Except now the conditions
are at two different locations: x = 0 and x = L, instead of both being at x = 0.
So we have the same general solution:

y(x) = cry1(x) + c2y2(x)

and we plug in the boundary conditions to get 2 linear equations on 2 unknowns:

c1y1(0) +c2y2(0) = d
ciyi(L) +coya(L) =e
rewriting this system of equations in matrix form,

[91(0) 92(0)} {m}_{d]
yi(L) y2(L) 2| |e
Just like before. But this time, unlike with IVPs, it’s actually possible for the determinant of this
matrix to be 0, depending upon what y1, y; and L are.

“Most” of the time, the matrix will still be invertible, and we’ll have a unique solution (c1, c2)
just like with IVPs.

But it is possible that the determinant is zero, in which case we will not have a unique
solution (c1, c2). This then breaks down into two possible scenarios:
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e There is no solution (c1,cz). E..

ci+c=0
cr+cr=1

where there is no possible way for ¢; and c; to satisfy both equations simultaneously.

e There are infinitely many solutions (c1, c2) E.g.

cit+cer=1
2c1+2¢c, =2

where these two equations are really the same equation, and so there are infinitely many
choices of ¢ and c; that would lead to solutions of the BVP. When we learn about eigenvalue
problems for BVPs, they can be thought of in a way as finding when this situation occurs.
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