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1 Resonance

Let’s consider an undamped forced oscillator:

y ′′ +ω2
0y = F0 cos(ωt), y(0) = y ′(0) = 0

The homogenous solution is:

yh(t) = c1 cos(ω0t) + c2 sin(ω0t)

1.1 ω 6= ω0

In this case, we guess a particular solution of the form:

Y(t) = A cos(ωt) + B sin(ωt)

Plugging it into the original equation,

Y ′′ +ω2
0Y = F0 cos(ωt)

−ω2A cos(ωt) + −ω2B sin(ωt) +ω2
0A cos(ωt) +ω2

0B sin(ωt) = F0 cos(ωt)[
Aω2

0 −Aω2
]

cos(ωt) +
[
Bω2

0 − Bω2
]

sin(ωt) = F0 cos(ωt)

Giving us the system of equations:

A(ω2
0 −ω2) = F0

B(ω2
0 −ω2) = 0

So
A =

F0

ω2
0 −ω2

, B = 0

So our particular solution is

Y(t) =
F0

ω2
0 −ω2

cos(ωt)

and the corresponding general solution is:

y(t) = yh(t) + Y(t) = c1 cos(ω0t) + c2 sin(ω0t) +
F0

ω2
0 −ω2

cos(ωt)



Plugging in the initial conditions to find c1 and c2,

y(0) = c1(1) + c2(0) +
F0

ω2
0 −ω2

(1) = 0

c1 = −
F0

ω2
0 −ω2

y ′(0) = −ω0c1(0) +ω0c2(1) +
F0

ω2
0 −ω2

(0) = 0

c2 = 0

So the solution to this initial value problem is:

F0

ω2
0 −ω2

[
cos(ωt) − cos(ω0t)

]
An example graph of such a solution would be:

We see that this function has a sort of “amplitude” of 2F0
ω2

0−ω2 , represented by the dashed blue
lines above.

We see that as ω → ω0, this “amplitude” increases to ∞. This essentially means that ex-
ternal forcing produces a stronger response when the forcing frequency ω is closer to the natural
frequency ω0.

What happens when ω = ω0 exactly? This special case is what is known as resonance, and
ω0 is often referred to as the resonant frequency of the system.

1.2 ω = ω0

If ω = ω0, then we have to guess a particular solution of the form:

Y(t) = t [A cos(ω0t) + B sin(ω0t)]

where we have added an extra power of t to ensure that the particular solution is not contained in
the homogenous solution.
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We calculate its derivatives:

Y ′ = (A cos(ω0t) + B sin(ω0t)) + t(−Aω0 sin(ω0t) + Bω0 cos(ω0t))

Y ′′ = (−2Aω0 sin(ω0t) + 2Bω0 cos(ω0t)) + t(−Aω2
0 cos(ω0t) − Bω2

0 sin(ω0t)

Plugging it into the left hand side of the equation,

Y ′′ +ω2
0Y = −2Aω0 sin(ω0t) + 2Bω0 cos(ω0t) = F0 cos(ω0t)

Solving for A and B:

A = 0, B =
F0
2ω0

resulting in a particular solution of

Y =
F0
2ω0

t sin(ω0t)

and a general solution of

y(t) = yh(t) + Y(t) = c1 cos(ω0t) + c2 sin(ω0t) +
F0
2ω0

t sin(ω0t)

Plugging in the initial conditions,

y(0) = c1 = 0

y ′(0) = c2ω0 = 0

so the solution to the IVP is:

y(t) =
F0
2ω0

t sin(ω0t)

An example graph of such a solution would be:

Where we see that y becomes unbounded as t → ∞.
So the main point of these examples is that as the forcing frequency (ω) approaches the

natural frequency (ω0), the system exhibits a stronger response, eventually becoming unbounded
at resonance when the forcing frequency ω is exactly the same as the natural frequency ω0.

Note: While the examples here were undamped, similar ideas hold for the damped case.
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2 Boundary Value Problems: A Linear Algebra Perspective

So by this point, we should be pretty used to initial value problems, which might look something
like:

ay ′′ + by ′ + cy = 0, y(0) = d, y ′(0) = e (1)

The basic idea is that we find the general solution in the form:

y(x) = c1y1(x) + c2y2(x)

Then we find c1 and c2 by plugging in the initial conditions, giving a system of 2 linear equations
on 2 unknowns:

y(0) = c1y1(0) + c2y2(0) = d

y ′(0) = c1y
′
1(0) + c2y

′
2(0) = e

rewriting this system of equations in matrix form,[
y1(0) y2(0)
y ′
1(0) y ′

2(0)

] [
c1
c2

]
=

[
d

e

]
If we compute the determinant of this matrix, we get the Wronskian evaluated at x = 0:

det = y1(0)y
′
2(0) − y ′

1(0)y2(0) = W[y1, y2](0)

and it turns out that this Wronskian (i.e. the determinant) is never zero, so this system of equations
always has a unique solution (c1, c2). However, for boundary value problems, this may not always
be the case.

An example boundary value problem might look something like:

ay ′′ + by ′ + cy = 0, y(0) = d, y(L) = e (2)

Note that Equation (2) is in almost exactly the same form as Equation (1). Except now the conditions
are at two different locations: x = 0 and x = L, instead of both being at x = 0.

So we have the same general solution:

y(x) = c1y1(x) + c2y2(x)

and we plug in the boundary conditions to get 2 linear equations on 2 unknowns:

y(0) = c1y1(0) + c2y2(0) = d

y ′(0) = c1y1(L) + c2y2(L) = e

rewriting this system of equations in matrix form,[
y1(0) y2(0)
y1(L) y2(L)

] [
c1
c2

]
=

[
d

e

]
Just like before. But this time, unlike with IVPs, it’s actually possible for the determinant of this
matrix to be 0, depending upon what y1, y2 and L are.

“Most” of the time, the matrix will still be invertible, and we’ll have a unique solution (c1, c2)
just like with IVPs.

But it is possible that the determinant is zero, in which case we will not have a unique
solution (c1, c2). This then breaks down into two possible scenarios:
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• There is no solution (c1, c2). E.g.

c1 + c2 = 0

c1 + c2 = 1

where there is no possible way for c1 and c2 to satisfy both equations simultaneously.

• There are infinitely many solutions (c1, c2) E.g.

c1 + c2 = 1

2c1 + 2c2 = 2

where these two equations are really the same equation, and so there are infinitely many
choices of c1 and c2 that would lead to solutions of the BVP. When we learn about eigenvalue
problems for BVPs, they can be thought of in a way as finding when this situation occurs.
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