Math 2930 Discussion Notes Week 1
Introduction to Differential Equations August 24, 2017

1 Introduction

The vast majority of this class will be focused on techniques for finding analytic solutions to dif-
ferential equations. So today I want to focus on how to reason qualitatively about differential
equations.

2  What are solutions?

Everyone should be familiar with basic algebraic equations like:
X —3x+2=0 (1)

And how to solve them, e.g. by factoring or the quadratic formula. By solution here we mean a
number x where when we plug it into both sides of the equation, the two sides match.
Now let’s compare with an example of a differential equation:
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(It actually turns out this is closely related to the algebraic equation above, we’ll learn more about
this later). In this case, a solution y is no longer a number like before, but in fact a function of the
independent variable t. I want to draw attention to the fact that we will often write just y as in
the differential equation above, and not y(t) to save space. It's important to remember that even
though we’re only writing y we really mean y is a function of t, and not just a variable with some
constant value.

Fortunately, many of the same ideas about algebraic equations carry over. Like algebraic
equations, differential equations may have exactly one solution, many solutions, or no solutions
at all. And even if we don’t know how to find a solution, we can still check if a given function is
a solution or not by plugging it in and seeing if both sides are equal. We could in principle figure
out the solutions to differential equations by guessing and checking with a bunch of different
functions, but as with algebraic equations, this is extremely inefficient as a way of finding solutions
unless we get very, very lucky with our guesses.



But, it is still a useful way of checking ourselves if we have a function that we have reason
to believe is a solution. For instance, if I gave you the function y(t) = cos(t) and asked you to
check if it was a solution to Equation (2), you would plug it into both sides:
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Note that the two sides are equal for some values of t. But they definitely are not equal for all values
of t. In other words, they are not the same functions. Therefore this would not be a solution to
Equation (2).

On the other hand, if I gave you the function y(t) = e?' and asked you to check if that was
a solution to Equation (2), then you would get:
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Since these two sides are always equal, this means that e! is in fact a solution to Equation (2).

In the rest of the course, you generally won't be required to plug solutions directly into
differential equations all that often, but there are a few reasons I wanted to go over this:

(1) So that you hopefully keep in mind what being a solution of a differential equation really
means

(2) This is a useful way of checking your answers. This is a really good idea to keep in mind
in case you have extra time left on quizzes or exams. Also, I've seen that some of the textbook’s
answers to HW questions are wrong. So if you keep getting an answer that disagrees with the
textbook, this would be a good way of determining whether you or the textbook is correct.



3 Qualitative Reasoning

OK, so we know what solutions to differential equations are, and how to check if we have a
solution, but we’d like to hopefully develop some sort of intuition for what differential equations
mean, and why they’re useful.

Let’s start with an example straight out of high-school and first-year college physics: a mass
m attached to a spring with spring constant k. Let’s label it's displacement from equilibrium as
x(t), which means its velocity is x/(t).

You've probably seen this system many, many times in physics, and hopefully know that the
resulting motion is sinusoidal. So to make things interesting, let’s say that instead of the spring
exerting a force of kx according to Hooke’s law, it exerts a force of kx3 instead. In this case, we
don’t know exactly what the resulting motion would be (it wouldn’t be the same sin and cos
functions as before), but we can still determine some things about its motion.

From physics, we know that energy in the system is conserved. The kinetic energy is given

by K = Jmv? = Jm(x’ )2. And the potential energy will be given by U = Jkx*.

So conservation of energy tells us that for some constant C,

1m(x’)z +hed — ¢ ()
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This is then a differential equation that the displacement x(t) of the spring must be a solution of.
Since x is a function of only one independent variable t, this is an ordinary differential equation,
usually abbreviated as an ODE. Since the highest order derivative that shows up in the equation
is the first derivative, this is a first-order ODE. And because the x and x’ terms are taken to powers
other than one, this is a nonlinear equation. C is a positive constant that we could figure out
from the initial position and velocity, but let’s keep things simple and leave it alone for now. The
important part is that it is constant, i.e. it does not change with time.

Right now, we haven’t yet learned how to actually solve a differential equation like this. But
we can still figure out some basic facts about solutions even if we don’t know exactly what they
are. So let’s take another look at (3):
1m(x’)2 + 1kx4 =C
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Even though x and x’ are quantities that vary in time, this differential equation is about relating
x and x’ to each other, rather than relating both of them to t, which is the usual idea in first-year
calculus. This is a very common approach with differential equations, that we look to relate the
evolution of the system (in terms of % or other derivatives), to the state of the current system (x).

If we examine the equation more closely, we can notice a few things:

e The left hand side is a sum of two terms that are positive constants times something squared,
so each term is non-negative

o ie. %m(x’)2 > 0, and JTkx4 >0

e Each of these terms must also be < C, otherwise our equation would say:

(something larger than C) + (something larger than 0) = C, which is impossible.
e ie. we also have upper bounds: Jm(x’)? < Cand jkx* < C.

e This can also be understood as saying that we can’t have more kinetic (or potential) energy
in the system at any point then we had total energy in the system at the start.
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e These upper bounds are quite useful in certain engineering applications: even without
knowing the exact solution x(t), we can guarantee that it’s displacement x and velocity x’
stay within a certain range that we know ahead of time. This can be quite useful if we want
to guarantee that the system stays within some safe range of positions/velocities.

e This equation also tells us that if [x| is decreasing (i.e. the mass is moving closer towards
the origin), then [x/| is increasing, (i.e. its speed is increasing) and vice versa. This helps us
develop a qualitative idea of how solutions behave.

This particular example might seem somewhat contrived (I don’t know whether or not x>
springs actually exist), but it helps demonstrate how differential equations are useful because
they give a relationship between a function (in this case x) and its derivatives (in this case just % .
Even if we don’t know how to solve them exactly, they can still be useful in helping us develop a
qualitative idea of how solutions behave. We’ll learn a lot more about this subject when we cover
section 2.5, which deals with autonomous ODEs.
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